中文版 | English
题名

Climate and environmental data contribute to the prediction of grain commodity prices using deep learning

作者
通讯作者Lipani,Aldo
发表日期
2023-09-01
DOI
发表期刊
ISSN
2767-035X
EISSN
2767-035X
卷号2期号:3页码:251-265
摘要
Background: Grain commodities are important to people's daily lives and their fluctuations can cause instability for households. Accurate prediction of grain prices can improve food and social security. Methods & Materials: This study proposes a hybrid Long Short-Term Memory (LSTM)-Convolutional Neural Network (CNN) model to forecast weekly oat, corn, soybean and wheat prices in the United States market. The LSTM-CNN is a multivariate model that uses weather data, macroeconomic data, commodities grain prices and snow factors, including Snow Water Equivalent (SWE), snowfall and snow depth, to make multistep ahead forecasts. Results: Of all the features, the snow factor is used for the first time for commodity price forecasting. We used the LSTM-CNN model to evaluate the 5, 10, 15 and 20 weeks ahead forecasting and this hybrid model had the lowest Mean Squared Error (MSE) at 5, 10 and 15 weeks ahead of prediction. In addition, Shapley values were calculated to analyse the feature contribution of the LSTM-CNN model when forecasting the testing set. Based on the feature contribution, SWE ranked third, fifth and seventh in feature importance in the 5-week ahead forecast for corn, oats and wheat, respectively, and 7–8 places higher than total precipitation, indicating the potential use of SWE in grain price forecasting. Conclusion: The hybrid multivariate LSTM-CNN model outperformed other models and the newly involved climate data, SWE, showed the research potential of using snow as an input variable to predict grain prices over a multistep ahead time horizon.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
WOS研究方向
Agriculture ; Environmental Sciences & Ecology
WOS类目
Agriculture, Multidisciplinary ; Environmental Sciences
WOS记录号
WOS:001292774800004
出版者
Scopus记录号
2-s2.0-85170038962
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559643
专题南方科技大学
作者单位
1.University College London (UCL),London,United Kingdom
2.Wegaw SA,Trélex,Switzerland
3.European Commission,Joint Research Centre (JRC),Ispra,VA,Italy
4.School of Geographical Sciences,University of Nottingham Ningbo China,Ningbo,China
5.Water@Leeds and School of Geography,University of Leeds,Leeds,United Kingdom
6.Research Centre for Intelligent Management & Innovation Development/Research Base for Shenzhen Municipal Policy & Development,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Wang,Zilin,French,Niamh,James,Thomas,et al. Climate and environmental data contribute to the prediction of grain commodity prices using deep learning[J]. Journal of Sustainable Agriculture and Environment,2023,2(3):251-265.
APA
Wang,Zilin.,French,Niamh.,James,Thomas.,Schillaci,Calogero.,Chan,Faith.,...&Lipani,Aldo.(2023).Climate and environmental data contribute to the prediction of grain commodity prices using deep learning.Journal of Sustainable Agriculture and Environment,2(3),251-265.
MLA
Wang,Zilin,et al."Climate and environmental data contribute to the prediction of grain commodity prices using deep learning".Journal of Sustainable Agriculture and Environment 2.3(2023):251-265.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zilin]的文章
[French,Niamh]的文章
[James,Thomas]的文章
百度学术
百度学术中相似的文章
[Wang,Zilin]的文章
[French,Niamh]的文章
[James,Thomas]的文章
必应学术
必应学术中相似的文章
[Wang,Zilin]的文章
[French,Niamh]的文章
[James,Thomas]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。