中文版 | English
题名

Constrained many-objective evolutionary algorithm based on adaptive infeasible ratio

作者
通讯作者Zhu,Zexuan
发表日期
2023-09-01
DOI
发表期刊
ISSN
1865-9284
EISSN
1865-9292
卷号15期号:3页码:281-300
摘要
Constrained many-objective optimization problems (CMaOPs) pose great challenges for evolutionary algorithms to reach an appropriate trade-off of solution feasibility, convergence, and diversity. To deal with this issue, this paper proposes a constrained many-objective evolutionary algorithm based on adaptive infeasible ratio (CMaOEA-AIR). In the evolution process, CMaOEA-AIR adaptively determines the ratio of infeasible solutions to survive into the next generation according to the number and the objective values of the infeasible solutions. The feasible solutions then undergo an exploitation-biased environmental selection based on indicator ranking and diversity maintaining, while the infeasible solutions undergo environmental selection based on adaptive selection criteria, aiming at the enhancement of exploration. In this way, both feasible and infeasible solutions are appropriately used to balance the exploration and exploitation of the search space. The proposed CMaOEA-AIR is compared with the other state-of-the-art constrained many-objective optimization algorithms on three types of CMaOPs of up to 15 objectives. The experimental results show that CMaOEA-AIR is competitive with the compared algorithms considering the overall performance in terms of solution feasibility, convergence, and diversity.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Innovative Research Group Project of the National Natural Science Foundation of China[61871272];
WOS研究方向
Computer Science ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Operations Research & Management Science
WOS记录号
WOS:001044211000001
出版者
EI入藏号
20233314524375
EI主题词
Constrained optimization ; Economic and social effects ; Environmental technology
EI分类号
Environmental Engineering:454 ; Systems Science:961 ; Social Sciences:971
Scopus记录号
2-s2.0-85167404924
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559656
专题南方科技大学
作者单位
1.College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,518060,China
2.Central R &D Institute,ZTE Corporation,Shenzhen,518057,China
3.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Liang,Zhengping,Chen,Canran,Wang,Xiyu,et al. Constrained many-objective evolutionary algorithm based on adaptive infeasible ratio[J]. Memetic Computing,2023,15(3):281-300.
APA
Liang,Zhengping,Chen,Canran,Wang,Xiyu,Liu,Ling,&Zhu,Zexuan.(2023).Constrained many-objective evolutionary algorithm based on adaptive infeasible ratio.Memetic Computing,15(3),281-300.
MLA
Liang,Zhengping,et al."Constrained many-objective evolutionary algorithm based on adaptive infeasible ratio".Memetic Computing 15.3(2023):281-300.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liang,Zhengping]的文章
[Chen,Canran]的文章
[Wang,Xiyu]的文章
百度学术
百度学术中相似的文章
[Liang,Zhengping]的文章
[Chen,Canran]的文章
[Wang,Xiyu]的文章
必应学术
必应学术中相似的文章
[Liang,Zhengping]的文章
[Chen,Canran]的文章
[Wang,Xiyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。