中文版 | English
题名

Cross-scale models for iron oxides bioreduction rates

作者
通讯作者Liu,Chongxuan
发表日期
2023-09-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号624
摘要

Bioreduction rates of iron (Fe) oxides are a key variable for predicting the fate and transport of Fe and contaminants in subsurface environments. Such rates, however, vary significantly at different spatial scales, and change in orders of magnitude even within the same scale. This study first collected and consistently processed the data of Fe oxide bioreduction rates from literature, which were then used to train a machine learning (ML) model that resulted in a well-fitted relationship between the cross-scale bioreduction rates and common influencing factors including electron donor concentrations, electron numbers, Fe concentrations, cell numbers, and reaction Gibbs free energy. Sensitivity analysis was performed to provide insights into the relative role of the influencing factors and how they affect the rates. The result indicated that their effects were generally consistent with saturation type models. New experiments of iron oxide bioreduction were performed to validate the ML-based cross-scale model. The result showed that ML-based model well predicted the experimental results, indicating the effectiveness of the model. The result has a strong implication for developing the models of cross-scale reaction rates of iron oxide bioreduction in environmental systems and for predicting the fate and transport of iron and contaminants.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[41830861]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:001050320700001
出版者
EI入藏号
20233014442653
EI主题词
Free Energy ; Gibbs Free Energy ; Machine Learning ; Reaction Rates ; Sensitivity Analysis
EI分类号
Thermodynamics:641.1 ; Artificial Intelligence:723.4 ; Chemical Reactions:802.2 ; Inorganic Compounds:804.2 ; Mathematics:921
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85165543643
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559674
专题工学院_环境科学与工程学院
作者单位
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control,School of the Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zhu,Huiyan,Wang,Shuai,Gao,Kun,et al. Cross-scale models for iron oxides bioreduction rates[J]. Journal of Hydrology,2023,624.
APA
Zhu,Huiyan,Wang,Shuai,Gao,Kun,&Liu,Chongxuan.(2023).Cross-scale models for iron oxides bioreduction rates.Journal of Hydrology,624.
MLA
Zhu,Huiyan,et al."Cross-scale models for iron oxides bioreduction rates".Journal of Hydrology 624(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cross-scale models f(1909KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Huiyan]的文章
[Wang,Shuai]的文章
[Gao,Kun]的文章
百度学术
百度学术中相似的文章
[Zhu,Huiyan]的文章
[Wang,Shuai]的文章
[Gao,Kun]的文章
必应学术
必应学术中相似的文章
[Zhu,Huiyan]的文章
[Wang,Shuai]的文章
[Gao,Kun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。