中文版 | English
题名

Long-term observation of global nuclear power plants thermal plumes using Landsat images and deep learning

作者
通讯作者Feng,Lian
发表日期
2023-09-01
DOI
发表期刊
ISSN
0034-4257
EISSN
1879-0704
卷号295
摘要
Thermal discharge from nuclear power plants poses a threat to the received natural water bodies, but the long-term extent and intensity of their surface thermal plumes remain unclear. In this study, we proposed a method to determine the background area for each drainage outlet and delineate the mixed surface thermal plumes based on 7,172 Landsat thermal infrared images. We further used a deep convolutional neural network integrated with prior location knowledge to extract core surface thermal plumes for 74 drainage outlets of 66 nuclear power plants worldwide. Our final model achieved a mean Intersection over Union (mIoU) of 0.8998 and an F1 score of 0.8886. We found that the mean maximal water surface temperature (WST) increment of the studied plants globally was 4.80 K. The Tianwan plant in China experienced the highest WST increase (8.51 K), followed by the Gravelines plant in France and the Ohi plant in Japan (7.91 K and 7.71 K, respectively). The Bruce plant in Canada had the largest thermal-polluted surface area (7.22 km). We also provided the dataset, Global Coastal Nuclear power plant Thermal Plume (GCNT-Plume), to describe the long-term occurrence of water surface thermal plumes. Three influencing factors of the water surface thermal plume were further analyzed in this study, including total capacity, drainage type, and location type, which were associated with operating power, drainage method, and geographical features, respectively. Total capacity was more statistically related to the maximum of WST increment under shallow drainage condition. The mean WST increment of shallow drainage was 1.22 K higher than that of deep drainage. Surface plumes larger than 4 km frequently occurred in the Great Lakes, while small surface thermal plumes (< 1 km) were primarily found in estuaries. The proposed method provides an important framework for future operational water surface thermal plume detection using remotely sensed observations and deep learning.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[41971304];National Natural Science Foundation of China[42271322];
WOS研究方向
Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目
Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号
WOS:001046905200001
出版者
EI入藏号
20233014433686
EI主题词
Convolutional neural networks ; Deep neural networks ; Infrared imaging ; Nuclear energy ; Nuclear fuels ; Nuclear power plants ; Remote sensing
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Nuclear Power Plants:613 ; Satellites:655.2 ; Imaging Techniques:746 ; Nuclear Physics:932.2
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85165357380
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559677
专题工学院_环境科学与工程学院
作者单位
1.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing,China
3.Department of Geosciences and Natural Resource Management,University of Copenhagen,Copenhagen,Denmark
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Wei,Jiawei,Feng,Lian,Tong,Yan,et al. Long-term observation of global nuclear power plants thermal plumes using Landsat images and deep learning[J]. Remote Sensing of Environment,2023,295.
APA
Wei,Jiawei,Feng,Lian,Tong,Yan,Xu,Yang,&Shi,Kun.(2023).Long-term observation of global nuclear power plants thermal plumes using Landsat images and deep learning.Remote Sensing of Environment,295.
MLA
Wei,Jiawei,et al."Long-term observation of global nuclear power plants thermal plumes using Landsat images and deep learning".Remote Sensing of Environment 295(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei,Jiawei]的文章
[Feng,Lian]的文章
[Tong,Yan]的文章
百度学术
百度学术中相似的文章
[Wei,Jiawei]的文章
[Feng,Lian]的文章
[Tong,Yan]的文章
必应学术
必应学术中相似的文章
[Wei,Jiawei]的文章
[Feng,Lian]的文章
[Tong,Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。