中文版 | English
题名

A structure-preserving integrator for incompressible finite elastodynamics based on a grad-div stabilized mixed formulation with particular emphasis on stretch-based material models

作者
通讯作者Liu,Ju
发表日期
2023-09-01
DOI
发表期刊
ISSN
0045-7825
EISSN
1879-2138
卷号414
摘要
We present a structure-preserving scheme based on a recently-proposed mixed formulation for incompressible hyperelasticity formulated in principal stretches. Although there exist several different Hamiltonians introduced for quasi-incompressible elastodynamics based on different multifield variational formulations, there is not much study on the fully incompressible materials in the literature. The adopted mixed formulation can be viewed as a finite-strain generalization of Herrmann variational formulation, and it naturally provides a new Hamiltonian for fully incompressible elastodynamics. Invoking the discrete gradient and scaled mid-point formulas, we are able to design fully-discrete schemes that preserve the Hamiltonian and momenta. Our analysis and numerical evidence also reveal that the scaled mid-point formula is non-robust numerically. The generalized Taylor–Hood element based on the spline technology conveniently provides a higher-order, robust, and inf-sup stable spatial discretization option for finite strain analysis. To enhance the element performance in volume conservation, the grad-div stabilization, a technique initially developed in computational fluid dynamics, is introduced here for elastodynamics. It is shown that the stabilization term does not impose additional restrictions for the algorithmic stress to respect the invariants, leading to an energy-decaying and momentum-conserving fully discrete scheme. A set of numerical examples is provided to justify the claimed properties. The grad-div stabilization is found to enhance the discrete mass conservation effectively. Furthermore, in contrast to conventional algorithms based on Cardano's formula and perturbation techniques, the spectral decomposition algorithm developed by Scherzinger and Dohrmann is robust and accurate to ensure the discrete conservation laws and is thus recommended for stretch-based material modeling.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[12072143];National Natural Science Foundation of China[12172160];Guangdong Science and Technology Department[2020B1212030001];Guangdong Science and Technology Department[2021QN020642];Southern University of Science and Technology[Y01326127];
WOS研究方向
Engineering ; Mathematics ; Mechanics
WOS类目
Engineering, Multidisciplinary ; Mathematics, Interdisciplinary Applications ; Mechanics
WOS记录号
WOS:001022517000001
出版者
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85160540669
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559700
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Guangdong,1088 Xueyuan Avenue, Shenzhen,518055,China
2.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Guangdong,1088 Xueyuan Avenue, Shenzhen,518055,China
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Guan,Jiashen,Yuan,Hongyan,Liu,Ju. A structure-preserving integrator for incompressible finite elastodynamics based on a grad-div stabilized mixed formulation with particular emphasis on stretch-based material models[J]. Computer Methods in Applied Mechanics and Engineering,2023,414.
APA
Guan,Jiashen,Yuan,Hongyan,&Liu,Ju.(2023).A structure-preserving integrator for incompressible finite elastodynamics based on a grad-div stabilized mixed formulation with particular emphasis on stretch-based material models.Computer Methods in Applied Mechanics and Engineering,414.
MLA
Guan,Jiashen,et al."A structure-preserving integrator for incompressible finite elastodynamics based on a grad-div stabilized mixed formulation with particular emphasis on stretch-based material models".Computer Methods in Applied Mechanics and Engineering 414(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guan,Jiashen]的文章
[Yuan,Hongyan]的文章
[Liu,Ju]的文章
百度学术
百度学术中相似的文章
[Guan,Jiashen]的文章
[Yuan,Hongyan]的文章
[Liu,Ju]的文章
必应学术
必应学术中相似的文章
[Guan,Jiashen]的文章
[Yuan,Hongyan]的文章
[Liu,Ju]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。