题名 | Explaining Memristive Reservoir Computing Through Evolving Feature Attribution |
作者 | |
通讯作者 | Minku,Leandro L.; Yao,Xin |
DOI | |
发表日期 | 2023
|
会议名称 | Genetic and Evolutionary Computation Conference (GECCO)
|
会议录名称 | |
会议日期 | JUL 15-19, 2023
|
会议地点 | null,Lisbon,PORTUGAL
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | Memristive Reservoir Computing (MRC) is a promising computing architecture for time series tasks, but lacks explainability, leading to unreliable predictions. To address this issue, we propose an evolutionary framework to explain the time series predictions of MRC systems. Our proposed approach attributes the feature importance of the time series via an evolutionary approach to explain the predictions. Our experiments show that our approach successfully identified the most influential factors, demonstrating the effectiveness of our design and its superiority in terms of explanation compared to state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | NSFC[62250710682]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:001117972600193
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559818 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology,China University of Birmingham,United Kingdom 2.Southern University of Science and Technology,China 3.University of Birmingham,United Kingdom |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Shi,Xinming,Wang,Zilu,Minku,Leandro L.,et al. Explaining Memristive Reservoir Computing Through Evolving Feature Attribution[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论