中文版 | English
题名

Rm-saea: Regularity model based surrogate-assisted evolutionary algorithms for expensive multi-objective optimization

作者
通讯作者Li,Bingdong
DOI
发表日期
2023-07-15
会议名称
Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
722-730
会议日期
JUL 15-19, 2023
会议地点
null,Lisbon,PORTUGAL
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要

Due to computationally and/or financially costly evaluation, tackling expensive multi-objective optimization problems is quite challenging for evolutionary algorithms. One popular approach to these problems is building cheap surrogate models to replace the expensive real function evaluations. To this end, various kinds of surrogate-assisted evolutionary algorithms (SAEAs) have been proposed, building surrogate models which predict the fitness values, classifications, or relation of the candidate solutions. However, off-spring generation, despite its important role in evolutionary optimization, has not received enough attention in these SAEAs. In this paper, a regularity model based framework, namely RM-SAEA, is proposed for better offspring generation in expensive multi-objective optimization. To be specific, RM-SAEA is featured with a heterogeneous offspring generation module, which is composed of a regularity model and a general genetic operator. Moreover, in order to alleviate the data deficiency issue in the expensive optimization scenario, a data augmentation strategy is employed while training the regularity model. Finally, two representative SAEAs are embedded into RM-SAEA in order to instantiate the proposed framework. Experimental results on benchmark multi-objective problems with up to 10 objectives demonstrate that RM-SAEA achieves the best overall performance compared with 6 state-of-the-art algorithms.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001031455100081
EI入藏号
20233314553791
EI主题词
Benchmarking ; Genetic algorithms ; Learning algorithms
EI分类号
Machine Learning:723.4.2 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85167735890
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559822
专题理学院_统计与数据科学系
工学院_计算机科学与工程系
作者单位
1.School of Computer Science and Technology,East China Normal University,Shanghai Institute of AI for Education,Shanghai,China
2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Lu,Yongfan,Li,Bingdong,Qian,Hong,et al. Rm-saea: Regularity model based surrogate-assisted evolutionary algorithms for expensive multi-objective optimization[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023:722-730.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
4. 会议RM-SAEA Regular(984KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu,Yongfan]的文章
[Li,Bingdong]的文章
[Qian,Hong]的文章
百度学术
百度学术中相似的文章
[Lu,Yongfan]的文章
[Li,Bingdong]的文章
[Qian,Hong]的文章
必应学术
必应学术中相似的文章
[Lu,Yongfan]的文章
[Li,Bingdong]的文章
[Qian,Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。