中文版 | English
题名

STHV-Net: Hypervolume Approximation based on Set Transformer

作者
通讯作者Shang,Ke
DOI
发表日期
2023-07-15
会议名称
Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
804-812
会议日期
JUL 15-19, 2023
会议地点
null,Lisbon,PORTUGAL
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
In this paper, we propose STHV-Net to approximate the hyper-volume indicator based on Set Transformer. Set Transformer is an advanced model to process set-form data which concentrates on the interaction of set elements. STHV-Net receives a non-dominated positive solution set of any size and outputs an approximate hyper-volume value of this solution set. The output value is independent of the order of the elements in the input set. The performance of STHV-Net is compared with three existing approximation methods (Monte Carlo, R2 indicator, HV-Net) using two evaluation criteria: Approximation errors and computing time. Our experimental results show that STHV-Net is superior to the Monte Carlo method and the R2 indicator method with respect to these two criteria. Compared with HV-Net, our method can obtain lower approximation errors at the cost of a slightly longer computing time. We provide six representative models with different parameter sizes for users who have different preferences about the tradeoff between approximation error and computing time.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China["62002152","62250710163","62250710682"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001031455100090
EI入藏号
20233314553834
EI主题词
Errors ; Evolutionary algorithms ; Multiobjective optimization
EI分类号
Optimization Techniques:921.5 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85167725214
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559824
专题工学院_计算机科学与工程系
作者单位
Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhu,Han,Shang,Ke,Ishibuchi,Hisao. STHV-Net: Hypervolume Approximation based on Set Transformer[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023:804-812.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Han]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Zhu,Han]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Zhu,Han]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。