题名 | STHV-Net: Hypervolume Approximation based on Set Transformer |
作者 | |
通讯作者 | Shang,Ke |
DOI | |
发表日期 | 2023-07-15
|
会议名称 | Genetic and Evolutionary Computation Conference (GECCO)
|
会议录名称 | |
页码 | 804-812
|
会议日期 | JUL 15-19, 2023
|
会议地点 | null,Lisbon,PORTUGAL
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | In this paper, we propose STHV-Net to approximate the hyper-volume indicator based on Set Transformer. Set Transformer is an advanced model to process set-form data which concentrates on the interaction of set elements. STHV-Net receives a non-dominated positive solution set of any size and outputs an approximate hyper-volume value of this solution set. The output value is independent of the order of the elements in the input set. The performance of STHV-Net is compared with three existing approximation methods (Monte Carlo, R2 indicator, HV-Net) using two evaluation criteria: Approximation errors and computing time. Our experimental results show that STHV-Net is superior to the Monte Carlo method and the R2 indicator method with respect to these two criteria. Compared with HV-Net, our method can obtain lower approximation errors at the cost of a slightly longer computing time. We provide six representative models with different parameter sizes for users who have different preferences about the tradeoff between approximation error and computing time. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China["62002152","62250710163","62250710682"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:001031455100090
|
EI入藏号 | 20233314553834
|
EI主题词 | Errors
; Evolutionary algorithms
; Multiobjective optimization
|
EI分类号 | Optimization Techniques:921.5
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85167725214
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559824 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhu,Han,Shang,Ke,Ishibuchi,Hisao. STHV-Net: Hypervolume Approximation based on Set Transformer[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023:804-812.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论