中文版 | English
题名

Local optima correlation assisted adaptive operator selection

作者
通讯作者Mei,Yi
DOI
发表日期
2023-07-15
会议名称
Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
339-347
会议日期
JUL 15-19, 2023
会议地点
null,Lisbon,PORTUGAL
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
For solving combinatorial optimisation problems with metaheuristics, different search operators are applied for sampling new solutions in the neighbourhood of a given solution. It is important to understand the relationship between operators for various purposes, e.g., adaptively deciding when to use which operator to find optimal solutions efficiently. However, it is difficult to theoretically analyse this relationship, especially in the complex solution space of combinatorial optimisation problems. In this paper, we propose to empirically analyse the relationship between operators in terms of the correlation between their local optima and develop a measure for quantifying their relationship. The comprehensive analyses on a wide range of capacitated vehicle routing problem benchmark instances show that there is a consistent pattern in the correlation between commonly used operators. Based on this newly proposed local optima correlation metric, we propose a novel approach for adaptively selecting among the operators during the search process. The core intention is to improve search efficiency by preventing wasting computational resources on exploring neighbourhoods where the local optima have already been reached. Experiments on randomly generated instances and commonly used benchmark datasets are conducted. Results show that the proposed approach outperforms commonly used adaptive operator selection methods.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China["62250710682","61906083"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001031455100041
EI入藏号
20233314553755
EI主题词
Benchmarking ; Heuristic algorithms ; Local search (optimization) ; Vehicle routing
EI分类号
Computer Programming:723.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85167714267
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559825
专题南方科技大学
作者单位
1.Southern University of Science and Technology,Shenzhen,China
2.The University of Birmingham,Birmingham,United Kingdom
3.Victoria University of Wellington,Wellington,New Zealand
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Pei,Jiyuan,Tong,Hao,Liu,Jialin,et al. Local optima correlation assisted adaptive operator selection[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023:339-347.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pei,Jiyuan]的文章
[Tong,Hao]的文章
[Liu,Jialin]的文章
百度学术
百度学术中相似的文章
[Pei,Jiyuan]的文章
[Tong,Hao]的文章
[Liu,Jialin]的文章
必应学术
必应学术中相似的文章
[Pei,Jiyuan]的文章
[Tong,Hao]的文章
[Liu,Jialin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。