中文版 | English
题名

Vectorizing Program Ingredients for Better JVM Testing

作者
通讯作者Chen,Junjie
DOI
发表日期
2023
会议名称
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)
会议录名称
会议日期
JUL 17-21, 2023
会议地点
null,Seattle,WA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
JVM testing is one of the most widely-used methodologies for guaranteeing the quality of JVMs. Among various JVM testing techniques, synthesis-based JVM testing, which constructs a test program by synthesizing various code snippets (also called program ingredients), has been demonstrated state-of-the-art. The existing synthesis-based JVM testing work puts more efforts in ensuring the validity of synthesized test programs, but ignores the influence of huge ingredient space, which largely limits the ingredient exploration efficiency as well as JVM testing performance. In this work, we propose Vectorized JVM Testing (called VECT) to further promote the performance of synthesis-based JVM testing. Its key insight is to reduce the huge ingredient space by clustering semantically similar ingredients via vectorizing ingredients using state-of-the-art code representation. To make VECT complete and more effective, based on vectorized ingredients, VECT further designs a feedback-driven ingredient selection strategy and an enhanced test oracle. We conducted an extensive study to evaluate VECT on three popular JVMs (i.e., HotSpot, OpenJ9, and Bisheng JDK) involving five OpenJDK versions. The results demonstrate VECT detects 115.03%similar to 776.92% more unique inconsistencies than the state-of-the-art JVM testing technique during the same testing time. In particular, VECT detects 26 previously unknown bugs for them, 15 of which have already been confirmed/fixed by developers.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["62232001","62002256"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001122661400043
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559845
专题南方科技大学
作者单位
1.College of Intelligence and Computing,Tianjin University,China
2.Southern University of Science and Technology,China
3.University of Illinois,Urbana-Champaign,United States
推荐引用方式
GB/T 7714
Gao,Tianchang,Chen,Junjie,Zhao,Yingquan,et al. Vectorizing Program Ingredients for Better JVM Testing[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gao,Tianchang]的文章
[Chen,Junjie]的文章
[Zhao,Yingquan]的文章
百度学术
百度学术中相似的文章
[Gao,Tianchang]的文章
[Chen,Junjie]的文章
[Zhao,Yingquan]的文章
必应学术
必应学术中相似的文章
[Gao,Tianchang]的文章
[Chen,Junjie]的文章
[Zhao,Yingquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。