题名 | Atomic potential energy uncertainty in machine-learning interatomic potentials and thermal transport in solids with atomic diffusion |
作者 | |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 2469-9950
|
EISSN | 2469-9969
|
卷号 | 108期号:1 |
摘要 | Thermal transport simulations have attracted wide attention in recent years, and one standard approach is to use the Green-Kubo method based on machine-learning interatomic potentials and equilibrium molecular dynamics (GK-MLIP-EMD). In this work, we focus on the lattice thermal conductivities κLs for solids with atomic diffusion by taking β-Cu2-xSe (0≤x≤0.05) as an example. Surprisingly, the GK-MLIP-EMD approach fails in the evaluation of κLs for β-Cu1.95Se, whereas the direct method based on nonequilibrium molecular dynamics reliably predicts these values instead. The failure of GK-MLIP-EMD for β-Cu1.95Se could be attributed to the ambiguous projection of the local atomic potential energy Ui in MLIPs, exacerbated by the Cu diffusion at elevated temperatures. The Cu diffusion in β-Cu1.95Se greatly increases the ratio of the convective term and the uncertainty of the conductive term. These influences are considered negligible in crystalline solids. Our findings imply that the ambiguous definition of Ui in MLIPs breaks down the applicability of the GK-MLIP-EMD approach to κL prediction for solids with severe atomic diffusion. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China["52172216","92163212"]
; Key Research Project of Zhejiang Laboratory[2021PE0AC02]
; Guangdong Innovation Research Team Project[2017ZT07C062]
; Shenzhen Municipal Key -Lab program[ZDSYS20190902092905285]
; Guangdong Provincial Key-Lab program[2019B030301001]
; Guangdong Major Talent Project Introduction Category[2019CX01C237]
; null[SUSTech]
|
WOS研究方向 | Materials Science
; Physics
|
WOS类目 | Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:001061332600001
|
出版者 | |
EI入藏号 | 20233214512136
|
EI主题词 | Atoms
; Diffusion in liquids
; Diffusion in solids
; Molecular dynamics
; Molecular physics
; Potential energy
; Thermal conductivity
|
EI分类号 | Thermodynamics:641.1
; Artificial Intelligence:723.4
; Physical Chemistry:801.4
; Atomic and Molecular Physics:931.3
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85166974234
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559864 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai,200050,China 2.University of Chinese Academy of Sciences,Beijing,100049,China 3.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China 4.College of Materials Science and Engineering,Henan Institute of Technology,Xinxiang,Henan,453000,China 5.Materials Genome Institute,Shanghai University,Shanghai,200444,China 6.Zhejiang Laboratory,Hangzhou,Zhejiang,311100,China 7.Shenzhen Municipal Key-Lab for Advanced Quantum Materials and Devices,Guangdong Provincial Key Lab for Computational Science and Materials Design,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China |
第一作者单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhu,Yifan,Dong,Erting,Yang,Hongliang,et al. Atomic potential energy uncertainty in machine-learning interatomic potentials and thermal transport in solids with atomic diffusion[J]. Physical Review B,2023,108(1).
|
APA |
Zhu,Yifan,Dong,Erting,Yang,Hongliang,Xi,Lili,Yang,Jiong,&Zhang,Wenqing.(2023).Atomic potential energy uncertainty in machine-learning interatomic potentials and thermal transport in solids with atomic diffusion.Physical Review B,108(1).
|
MLA |
Zhu,Yifan,et al."Atomic potential energy uncertainty in machine-learning interatomic potentials and thermal transport in solids with atomic diffusion".Physical Review B 108.1(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论