中文版 | English
题名

Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator

作者
通讯作者Wang,Jianchun
发表日期
2023-07-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号35期号:7
摘要
Long-term predictions of nonlinear dynamics of three-dimensional (3D) turbulence are very challenging for machine learning approaches. In this paper, we propose an implicit U-Net enhanced Fourier neural operator (IU-FNO) for stable and efficient predictions on the long-term large-scale dynamics of turbulence. The IU-FNO model employs implicit recurrent Fourier layers for deeper network extension and incorporates the U-net network for the accurate prediction on small-scale flow structures. The model is systematically tested in large-eddy simulations of three types of 3D turbulence, including forced homogeneous isotropic turbulence, temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The numerical simulations demonstrate that the IU-FNO model is more accurate than other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-Net enhanced FNO (U-FNO), and dynamic Smagorinsky model (DSM) in predicting a variety of statistics, including the velocity spectrum, probability density functions of vorticity and velocity increments, and instantaneous spatial structures of flow field. Moreover, IU-FNO improves long-term stable predictions, which has not been achieved by the previous versions of FNO. Moreover, the proposed model is much faster than traditional large-eddy simulation with the DSM model and can be well generalized to the situations of higher Taylor-Reynolds numbers and unseen flow regime of decaying turbulence.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["91952104","92052301","12172161","91752201"] ; NSFC Basic Science Center Program[11988102] ; Shenzhen Science and Technology Program[KQTD20180411143441009] ; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103] ; Department of Science and Technology of Guangdong Province[2020B1212030001]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:001034275700005
出版者
EI入藏号
20233114468048
EI主题词
Forecasting ; Fourier transforms ; Network layers ; Probability density function ; Reynolds number ; Turbulence
EI分类号
Fluid Flow:631 ; Fluid Flow, General:631.1 ; Computer Software, Data Handling and Applications:723 ; Mathematics:921 ; Mathematical Transformations:921.3 ; Probability Theory:922.1
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85166167464
来源库
Scopus
引用统计
被引频次[WOS]:22
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559871
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Li,Zhijie,Peng,Wenhui,Yuan,Zelong,et al. Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator[J]. Physics of Fluids,2023,35(7).
APA
Li,Zhijie,Peng,Wenhui,Yuan,Zelong,&Wang,Jianchun.(2023).Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator.Physics of Fluids,35(7).
MLA
Li,Zhijie,et al."Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator".Physics of Fluids 35.7(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Zhijie]的文章
[Peng,Wenhui]的文章
[Yuan,Zelong]的文章
百度学术
百度学术中相似的文章
[Li,Zhijie]的文章
[Peng,Wenhui]的文章
[Yuan,Zelong]的文章
必应学术
必应学术中相似的文章
[Li,Zhijie]的文章
[Peng,Wenhui]的文章
[Yuan,Zelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。