题名 | Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator |
作者 | |
通讯作者 | Wang,Jianchun |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 1070-6631
|
EISSN | 1089-7666
|
卷号 | 35期号:7 |
摘要 | Long-term predictions of nonlinear dynamics of three-dimensional (3D) turbulence are very challenging for machine learning approaches. In this paper, we propose an implicit U-Net enhanced Fourier neural operator (IU-FNO) for stable and efficient predictions on the long-term large-scale dynamics of turbulence. The IU-FNO model employs implicit recurrent Fourier layers for deeper network extension and incorporates the U-net network for the accurate prediction on small-scale flow structures. The model is systematically tested in large-eddy simulations of three types of 3D turbulence, including forced homogeneous isotropic turbulence, temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The numerical simulations demonstrate that the IU-FNO model is more accurate than other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-Net enhanced FNO (U-FNO), and dynamic Smagorinsky model (DSM) in predicting a variety of statistics, including the velocity spectrum, probability density functions of vorticity and velocity increments, and instantaneous spatial structures of flow field. Moreover, IU-FNO improves long-term stable predictions, which has not been achieved by the previous versions of FNO. Moreover, the proposed model is much faster than traditional large-eddy simulation with the DSM model and can be well generalized to the situations of higher Taylor-Reynolds numbers and unseen flow regime of decaying turbulence. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China["91952104","92052301","12172161","91752201"]
; NSFC Basic Science Center Program[11988102]
; Shenzhen Science and Technology Program[KQTD20180411143441009]
; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103]
; Department of Science and Technology of Guangdong Province[2020B1212030001]
|
WOS研究方向 | Mechanics
; Physics
|
WOS类目 | Mechanics
; Physics, Fluids & Plasmas
|
WOS记录号 | WOS:001034275700005
|
出版者 | |
EI入藏号 | 20233114468048
|
EI主题词 | Forecasting
; Fourier transforms
; Network layers
; Probability density function
; Reynolds number
; Turbulence
|
EI分类号 | Fluid Flow:631
; Fluid Flow, General:631.1
; Computer Software, Data Handling and Applications:723
; Mathematics:921
; Mathematical Transformations:921.3
; Probability Theory:922.1
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85166167464
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:22
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559871 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 力学与航空航天工程系; 南方科技大学 |
通讯作者单位 | 力学与航空航天工程系; 南方科技大学 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Li,Zhijie,Peng,Wenhui,Yuan,Zelong,et al. Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator[J]. Physics of Fluids,2023,35(7).
|
APA |
Li,Zhijie,Peng,Wenhui,Yuan,Zelong,&Wang,Jianchun.(2023).Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator.Physics of Fluids,35(7).
|
MLA |
Li,Zhijie,et al."Long-term predictions of turbulence by implicit U-Net enhanced Fourier neural operator".Physics of Fluids 35.7(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论