中文版 | English
题名

Skating-Mixer: Long-Term Sport Audio-Visual Modeling with MLPs

作者
通讯作者Zheng,Feng
发表日期
2023-06-27
会议名称
37th AAAI Conference on Artificial Intelligence (AAAI) / 35th Conference on Innovative Applications of Artificial Intelligence / 13th Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
ISBN
*****************
会议录名称
卷号
37
页码
2901-2909
会议日期
FEB 07-14, 2023
会议地点
null,Washington,DC
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Figure skating scoring is challenging because it requires judging the technical moves of the players as well as their coordination with the background music. Most learning-based methods cannot solve it well for two reasons: 1) each move in figure skating changes quickly, hence simply applying traditional frame sampling will lose a lot of valuable information, especially in 3 to 5 minutes long videos; 2) prior methods rarely considered the critical audio-visual relationship in their models. Due to these reasons, we introduce a novel architecture, named Skating-Mixer. It extends the MLP framework in a multimodal fashion and effectively learns longterm representations through our designed memory recurrent unit (MRU). Aside from the model, we collected a highquality audio-visual FS 1000 dataset, which contains over 1000 videos on 8 types of programs with 7 different rating metrics, overtaking other datasets in both quantity and diversity. Experiments show the proposed method achieves SOTAs over all major metrics on the public Fis-V and our FS 1000 dataset. In addition, we include an analysis applying our method to the recent competitions in Beijing 2022 Winter Olympic Games, proving our method has strong applicability.
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61972188];National Natural Science Foundation of China[62122035];
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号
WOS:001243762100029
EI入藏号
20233414583431
EI主题词
Artificial intelligence ; Mixers (machinery)
EI分类号
Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85167997687
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559911
专题南方科技大学
作者单位
1.Southern University of Science and Technology,China
2.The Chinese University of Hong Kong,Hong Kong
3.AI Initiative,King Abdullah University of Science and Technology (KAUST),Saudi Arabia
4.Harbin Institute of Technology (Shenzhen),China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Xia,Jingfei,Zhuge,Mingchen,Geng,Tiantian,et al. Skating-Mixer: Long-Term Sport Audio-Visual Modeling with MLPs[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2023:2901-2909.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xia,Jingfei]的文章
[Zhuge,Mingchen]的文章
[Geng,Tiantian]的文章
百度学术
百度学术中相似的文章
[Xia,Jingfei]的文章
[Zhuge,Mingchen]的文章
[Geng,Tiantian]的文章
必应学术
必应学术中相似的文章
[Xia,Jingfei]的文章
[Zhuge,Mingchen]的文章
[Geng,Tiantian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。