题名 | Skating-Mixer: Long-Term Sport Audio-Visual Modeling with MLPs |
作者 | |
通讯作者 | Zheng,Feng |
发表日期 | 2023-06-27
|
会议名称 | 37th AAAI Conference on Artificial Intelligence (AAAI) / 35th Conference on Innovative Applications of Artificial Intelligence / 13th Symposium on Educational Advances in Artificial Intelligence
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
ISBN | *****************
|
会议录名称 | |
卷号 | 37
|
页码 | 2901-2909
|
会议日期 | FEB 07-14, 2023
|
会议地点 | null,Washington,DC
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | Figure skating scoring is challenging because it requires judging the technical moves of the players as well as their coordination with the background music. Most learning-based methods cannot solve it well for two reasons: 1) each move in figure skating changes quickly, hence simply applying traditional frame sampling will lose a lot of valuable information, especially in 3 to 5 minutes long videos; 2) prior methods rarely considered the critical audio-visual relationship in their models. Due to these reasons, we introduce a novel architecture, named Skating-Mixer. It extends the MLP framework in a multimodal fashion and effectively learns longterm representations through our designed memory recurrent unit (MRU). Aside from the model, we collected a highquality audio-visual FS 1000 dataset, which contains over 1000 videos on 8 types of programs with 7 different rating metrics, overtaking other datasets in both quantity and diversity. Experiments show the proposed method achieves SOTAs over all major metrics on the public Fis-V and our FS 1000 dataset. In addition, we include an analysis applying our method to the recent competitions in Beijing 2022 Winter Olympic Games, proving our method has strong applicability. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61972188];National Natural Science Foundation of China[62122035];
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001243762100029
|
EI入藏号 | 20233414583431
|
EI主题词 | Artificial intelligence
; Mixers (machinery)
|
EI分类号 | Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85167997687
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559911 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology,China 2.The Chinese University of Hong Kong,Hong Kong 3.AI Initiative,King Abdullah University of Science and Technology (KAUST),Saudi Arabia 4.Harbin Institute of Technology (Shenzhen),China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Xia,Jingfei,Zhuge,Mingchen,Geng,Tiantian,et al. Skating-Mixer: Long-Term Sport Audio-Visual Modeling with MLPs[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2023:2901-2909.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论