中文版 | English
题名

Adaptive Policy Learning for Offline-to-Online Reinforcement Learning

作者
通讯作者Luo,Xufang
发表日期
2023-06-27
会议名称
37th AAAI Conference on Artificial Intelligence (AAAI) / 35th Conference on Innovative Applications of Artificial Intelligence / 13th Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
ISBN
*****************
会议录名称
卷号
37
页码
11372-11380
会议日期
FEB 07-14, 2023
会议地点
null,Washington,DC
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Conventional reinforcement learning (RL) needs an environment to collect fresh data, which is impractical when online interactions are costly. Offline RL provides an alternative solution by directly learning from the previously collected dataset. However, it will yield unsatisfactory performance if the quality of the offline datasets is poor. In this paper, we consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online, and propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data. Specifically, we explicitly consider the difference between the online and offline data and apply an adaptive update scheme accordingly, that is, a pessimistic update strategy for the offline dataset and an optimistic/greedy update scheme for the online dataset. Such a simple and effective method provides a way to mix the offline and online RL and achieve the best of both worlds. We further provide two detailed algorithms for implementing the framework through embedding value or policy-based RL algorithms into it. Finally, we conduct extensive experiments on popular continuous control tasks, and results show that our algorithm can learn the expert policy with high sample efficiency even when the quality of offline dataset is poor, e.g., random dataset.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Mathematics, Applied
WOS记录号
WOS:001243747800120
EI入藏号
20233414600821
EI主题词
E-learning
EI分类号
Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85162680903
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559917
专题南方科技大学
作者单位
1.University of Technology Sydney,Australia
2.Microsoft Research Asia,China
3.National University of Singapore,Singapore
4.Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Zheng,Han,Luo,Xufang,Wei,Pengfei,et al. Adaptive Policy Learning for Offline-to-Online Reinforcement Learning[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2023:11372-11380.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Han]的文章
[Luo,Xufang]的文章
[Wei,Pengfei]的文章
百度学术
百度学术中相似的文章
[Zheng,Han]的文章
[Luo,Xufang]的文章
[Wei,Pengfei]的文章
必应学术
必应学术中相似的文章
[Zheng,Han]的文章
[Luo,Xufang]的文章
[Wei,Pengfei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。