中文版 | English
题名

A novel traffic sign recognition approach for open scenarios 面向开放场景的交通标志识别方法

作者
通讯作者Ye,Xuan
发表日期
2023-05-01
DOI
发表期刊
ISSN
1000-2618
卷号40期号:3页码:258-265
摘要
Traffic sign recognition systems based on the traditional deep learning technologies typically follow the complete data-driven mode, resulting in their unstable performances and significant security risks when applied to the real-world open scenarios. To alleviate this problem, a novel method is proposed by constructing the semantic data set based on road traffic sign design standards and using the zero-shot learning (ZSL) mechanism to develop a general TSR framework with reasoning and interpretation capabilities. This method can effectively overcome the problems of dynamic update of road traffic signs and classes missing in practice. Furthermore, the national standard for road traffic signs is used to abstract the general attributes of all classes and then the information is injected into the training process of traditional data-driven model as domain knowledge. With the help of domain knowledge, the proposed ZSL-based TSR method can recognize traffic signs that have not been seen in the training stage more accurately than random prediction and traditional deep learning models. Experimental results on the Chinese traffic sign database (CTSDB) and the German traffic sign recognition benchmark (GTSRB) demonstrate that our method, which trains a semantic auto-encoder model, can significantly improve the accuracy in traditional zero-shot learning settings. Specifically, when identifying previously unseen traffic signs in the training set, our approach achieves an improvement in accuracy of at least 29. 96% and 24. 25% on CTSDB and GTSRB, respectively, compared to random prediction. The study verifies the feasibility and effectiveness of the proposed scheme.
关键词
相关链接[Scopus记录]
语种
中文
学校署名
其他
Scopus记录号
2-s2.0-85162734764
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559993
专题南方科技大学
作者单位
1.Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ),Shenzhen,Guangdong Province,518107,China
2.Research Institute of Trustworthy Autonomous System,Southern University of Science and Technology,Shenzhen,Guangdong Province,518055,China
推荐引用方式
GB/T 7714
Cao,Weipeng,Wu,Yuhao,Li,Dachuan,等. A novel traffic sign recognition approach for open scenarios 面向开放场景的交通标志识别方法[J]. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering,2023,40(3):258-265.
APA
Cao,Weipeng,Wu,Yuhao,Li,Dachuan,Ming,Zhong,Chen,Zhenru,&Ye,Xuan.(2023).A novel traffic sign recognition approach for open scenarios 面向开放场景的交通标志识别方法.Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering,40(3),258-265.
MLA
Cao,Weipeng,et al."A novel traffic sign recognition approach for open scenarios 面向开放场景的交通标志识别方法".Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering 40.3(2023):258-265.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao,Weipeng]的文章
[Wu,Yuhao]的文章
[Li,Dachuan]的文章
百度学术
百度学术中相似的文章
[Cao,Weipeng]的文章
[Wu,Yuhao]的文章
[Li,Dachuan]的文章
必应学术
必应学术中相似的文章
[Cao,Weipeng]的文章
[Wu,Yuhao]的文章
[Li,Dachuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。