中文版 | English
题名

Clustered-patch Element Connection for Few-shot Learning

作者
通讯作者Wang,Chengjie
发表日期
2023
ISSN
1045-0823
会议录名称
卷号
2023-August
页码
991-998
摘要
Weak feature representation problem has influenced the performance of few-shot classification task for a long time. To alleviate this problem, recent researchers build connections between support and query instances through embedding patch features to generate discriminative representations. However, we observe that there exists semantic mismatches (foreground/background) among these local patches, because the location and size of the target object are not fixed. What is worse, these mismatches result in unreliable similarity confidences, and complex dense connection exacerbates the problem. According to this, we propose a novel Clustered-patch Element Connection (CEC) layer to correct the mismatch problem. The CEC layer leverages Patch Cluster and Element Connection operations to collect and establish reliable connections with high similarity patch features, respectively. Moreover, we propose a CECNet, including CEC layer based attention module and distance metric. The former is utilized to generate a more discriminative representation benefiting from the global clustered-patch features, and the latter is introduced to reliably measure the similarity between pair-features. Extensive experiments demonstrate that our CECNet outperforms the state-of-the-art methods on classification benchmark. Furthermore, our CEC approach can be extended into few-shot segmentation and detection tasks, which achieves competitive performances.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20233714713795
EI主题词
Artificial intelligence
EI分类号
Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85170377492
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560049
专题南方科技大学
作者单位
1.Tencent Youtu Lab,China
2.Southern University of Science and Technology,China
3.Shanghai Jiao Tong University,China
推荐引用方式
GB/T 7714
Lai,Jinxiang,Yang,Siqian,Zhou,Junhong,et al. Clustered-patch Element Connection for Few-shot Learning[C],2023:991-998.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lai,Jinxiang]的文章
[Yang,Siqian]的文章
[Zhou,Junhong]的文章
百度学术
百度学术中相似的文章
[Lai,Jinxiang]的文章
[Yang,Siqian]的文章
[Zhou,Junhong]的文章
必应学术
必应学术中相似的文章
[Lai,Jinxiang]的文章
[Yang,Siqian]的文章
[Zhou,Junhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。