中文版 | English
题名

Robust Deep Learning Models against Semantic-Preserving Adversarial Attack

作者
通讯作者Gao,Dashan
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
会议录名称
卷号
2023-June
会议日期
JUN 18-23, 2023
会议地点
null,Broadbeach,AUSTRALIA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Deep learning models can be fooled by small lp-norm adversarial perturbations and natural perturbations in terms of attributes. Although the robustness against each perturbation has been explored, it remains a challenge to address the robustness against joint perturbations effectively. In this paper, we study the robustness of deep learning models against joint perturbations by proposing a novel attack mechanism named Semantic-Preserving Adversarial (SPA) attack, which can then be used to enhance adversarial training. Specifically, we introduce an attribute manipulator to generate natural and human-comprehensible perturbations and a noise generator to generate diverse adversarial noises. Based on such combined noises, we optimize both the attribute value and the diversity variable to generate jointly-perturbed samples. For robust training, we adversarially train the deep learning model against the generated joint perturbations. Empirical results on four benchmarks show that the SPA attack causes a larger performance decline with small l∞ norm-ball constraints compared to existing approaches. Furthermore, our SPA-enhanced training outperforms existing defense methods against such joint perturbations.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198701035
Scopus记录号
2-s2.0-85169592337
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560074
专题南方科技大学
作者单位
1.Dept. of Cse,SUSTech,Shenzhen,China
2.Dept. of Cse,University of Technology,Sydney,Australia
3.SUSTech,Hkust,Dept. of CSE,Hong Kong
4.Huawei Technologies Co.,Ltd.,Shenzhen,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhao,Yunce,Gao,Dashan,Yao,Yinghua,et al. Robust Deep Learning Models against Semantic-Preserving Adversarial Attack[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Yunce]的文章
[Gao,Dashan]的文章
[Yao,Yinghua]的文章
百度学术
百度学术中相似的文章
[Zhao,Yunce]的文章
[Gao,Dashan]的文章
[Yao,Yinghua]的文章
必应学术
必应学术中相似的文章
[Zhao,Yunce]的文章
[Gao,Dashan]的文章
[Yao,Yinghua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。