题名 | Robust Deep Learning Models against Semantic-Preserving Adversarial Attack |
作者 | |
通讯作者 | Gao,Dashan |
DOI | |
发表日期 | 2023
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
会议录名称 | |
卷号 | 2023-June
|
会议日期 | JUN 18-23, 2023
|
会议地点 | null,Broadbeach,AUSTRALIA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Deep learning models can be fooled by small lp-norm adversarial perturbations and natural perturbations in terms of attributes. Although the robustness against each perturbation has been explored, it remains a challenge to address the robustness against joint perturbations effectively. In this paper, we study the robustness of deep learning models against joint perturbations by proposing a novel attack mechanism named Semantic-Preserving Adversarial (SPA) attack, which can then be used to enhance adversarial training. Specifically, we introduce an attribute manipulator to generate natural and human-comprehensible perturbations and a noise generator to generate diverse adversarial noises. Based on such combined noises, we optimize both the attribute value and the diversity variable to generate jointly-perturbed samples. For robust training, we adversarially train the deep learning model against the generated joint perturbations. Empirical results on four benchmarks show that the SPA attack causes a larger performance decline with small l∞ norm-ball constraints compared to existing approaches. Furthermore, our SPA-enhanced training outperforms existing defense methods against such joint perturbations. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001046198701035
|
Scopus记录号 | 2-s2.0-85169592337
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/560074 |
专题 | 南方科技大学 |
作者单位 | 1.Dept. of Cse,SUSTech,Shenzhen,China 2.Dept. of Cse,University of Technology,Sydney,Australia 3.SUSTech,Hkust,Dept. of CSE,Hong Kong 4.Huawei Technologies Co.,Ltd.,Shenzhen,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhao,Yunce,Gao,Dashan,Yao,Yinghua,et al. Robust Deep Learning Models against Semantic-Preserving Adversarial Attack[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论