题名 | Noise-Tolerant Hardware-Aware Pruning for Deep Neural Networks |
作者 | |
通讯作者 | Li,Guiying |
DOI | |
发表日期 | 2023
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 13969 LNCS
|
页码 | 127-138
|
摘要 | Existing hardware-aware pruning methods for deep neural networks do not take the uncertain execution environment of low-end hardware into consideration. That makes those methods unreliable, since the hardware environments they used for evaluating the pruned models contain uncertainty and thus the performance values contain noise. To deal with this problem, this paper proposes noise-tolerant hardware-aware pruning, i.e., NT-HP. It uses a population-based idea to iteratively generate pruned models. Each pruned model is sent to realistic low-end hardware for performance evaluations. For the noisy values of performance indicators collected from hardware, a threshold for comparison is set, where only the pruned models with significantly better performances are kept in the next generation. Our experimental results show that with the noise-tolerant technique involved, NT-HP can get better pruned models in the uncertain execution environment of low-end hardware. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20233614671918
|
EI主题词 | Iterative methods
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85169412754
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/560089 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China 3.TTE Lab,Huawei Technologies Co.,Ltd.,Shenzhen,China |
第一作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lu,Shun,Chen,Cheng,Zhang,Kunlong,et al. Noise-Tolerant Hardware-Aware Pruning for Deep Neural Networks[C],2023:127-138.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论