中文版 | English
题名

A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model

作者
通讯作者Cai,Mingchao
发表日期
2023
DOI
发表期刊
EISSN
2297-4687
卷号9
摘要
Introduction: Biot's consolidation model in poroelasticity describes the interaction between the fluid and the deformable porous structure. Based on the fixed-stress splitting iterative method proposed by Mikelic et al. (Computat Geosci, 2013), we present a network approach to solve Biot's consolidation model using physics-informed neural networks (PINNs). Methods: Two independent and small neural networks are used to solve the displacement and pressure variables separately. Accordingly, separate loss functions are proposed, and the fixed stress splitting iterative algorithm is used to couple these variables. Error analysis is provided to support the capability of the proposed fixed-stress splitting-based PINNs (FS-PINNs). Results: Several numerical experiments are performed to evaluate the effectiveness and accuracy of our approach, including the pure Dirichlet problem, the mixed partial Neumann and partial Dirichlet problem, and the Barry-Mercer's problem. The performance of FS-PINNs is superior to traditional PINNs, demonstrating the effectiveness of our approach. Discussion: Our study highlights the successful application of PINNs with the fixed-stress splitting iterative method to tackle Biot's model. The ability to use independent neural networks for displacement and pressure offers computational advantages while maintaining accuracy. The proposed approach shows promising potential for solving other similar geoscientific problems.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
NIH-RCMI[347 U54MD013376] ; Center for Equitable Artificial Intelligence and Machine Learning Systems (CEAMLS) at Morgan State University[02232301] ; National Science Foundation["1831950","2228010"] ; NSF of China[11971221] ; Guangdong NSF Major Fund[2021ZDZX1001] ; Shenzhen Sci-Tech Fund["RCJC20200714114556020","JCYJ20200109115422828","JCYJ20190809150413261"]
WOS研究方向
Mathematics
WOS类目
Mathematics, Interdisciplinary Applications
WOS记录号
WOS:001049778300001
出版者
Scopus记录号
2-s2.0-85168283491
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560148
专题理学院_数学系
作者单位
1.Department of Mathematics,Morgan State University,Baltimore,United States
2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,Guangdong,China
推荐引用方式
GB/T 7714
Cai,Mingchao,Gu,Huipeng,Hong,Pengxiang,et al. A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model[J]. Frontiers in Applied Mathematics and Statistics,2023,9.
APA
Cai,Mingchao,Gu,Huipeng,Hong,Pengxiang,&Li,Jingzhi.(2023).A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model.Frontiers in Applied Mathematics and Statistics,9.
MLA
Cai,Mingchao,et al."A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model".Frontiers in Applied Mathematics and Statistics 9(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Mingchao]的文章
[Gu,Huipeng]的文章
[Hong,Pengxiang]的文章
百度学术
百度学术中相似的文章
[Cai,Mingchao]的文章
[Gu,Huipeng]的文章
[Hong,Pengxiang]的文章
必应学术
必应学术中相似的文章
[Cai,Mingchao]的文章
[Gu,Huipeng]的文章
[Hong,Pengxiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。