题名 | Estimates for eigenvalues of the Neumann and Steklov problems |
作者 | |
通讯作者 | Mao,Jing |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 2191-9496
|
EISSN | 2191-950X
|
卷号 | 12期号:1 |
摘要 | We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Research Team Project of Jingchu University of Technology[TD202006]
; Research Project of Jingchu University of Technology["YB202010","ZX202002","ZX202006"]
; NSF of Hubei Province[2022CFB527]
; NSF of China[11801496]
; CNPq, Brazil["307089/2014-2","306146/2014-2"]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
; Mathematics
|
WOS记录号 | WOS:001035385700001
|
出版者 | |
Scopus记录号 | 2-s2.0-85166409073
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/560190 |
专题 | 理学院_数学系 |
作者单位 | 1.School of Mathematics and Physics Science,Jingchu University of Technology,Jingmen,448000,China 2.Faculty of Mathematics and Statistics,Key Laboratory of Applied Mathematics of Hubei Province,Hubei University,Wuhan,430062,China 3.Department of Mathematics,Instituto Superior Técnico,University of Lisbon,Lisbon,Av. Rovisco Pais,1049-001,Portugal 4.Departamento de Matemática,Universidade de Brasilia,Brasilia,DF,70910-900,Brazil 5.Department of Mathematics,Southern University of Science and Technology,Shenzhen,Guandong,518055,China |
推荐引用方式 GB/T 7714 |
Du,Feng,Mao,Jing,Wang,Qiaoling,et al. Estimates for eigenvalues of the Neumann and Steklov problems[J]. Advances in Nonlinear Analysis,2023,12(1).
|
APA |
Du,Feng,Mao,Jing,Wang,Qiaoling,Xia,Changyu,&Zhao,Yan.(2023).Estimates for eigenvalues of the Neumann and Steklov problems.Advances in Nonlinear Analysis,12(1).
|
MLA |
Du,Feng,et al."Estimates for eigenvalues of the Neumann and Steklov problems".Advances in Nonlinear Analysis 12.1(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论