中文版 | English
题名

Towards accurate mapping of loess waterworn gully by integrating google earth imagery and DEM using deep learning

作者
通讯作者Zhou,Yi; Yang,Feng
发表日期
2023
DOI
发表期刊
ISSN
2095-6339
EISSN
2589-059X
卷号12期号:1页码:13-28
摘要
Accurate mapping of loess waterworn gully (LWG) is essential to further study gully erosion and geomorphological evolution for the Chinese Loess Plateau (CLP). Due to the vertical joint and collapsibility of loess, LWGs have the characteristics of zigzag and unique slope abruptness under synthetic action of hydraulic force and gravity. This forces existing LWG mapping methods to either focus on the improvement of mapping accuracy or center on the increase of mapping efficiency. However, simultaneously achieving accurate and efficient mapping of LWG is still in its infancy under complex topographic conditions. Here, we proposed a method that innovatively integrates the loess slope abruptness feature into an improved deep learning semantic segmentation framework for LWG mapping using 0.6 m Google imagery and 5 m DEM data. We selected four study areas representing typical loess landforms to test the performance of our method. The proposed method can achieve satisfactory mapping results, with the F1 score, mean Intersection-over-Union (mIoU), and overall accuracy of 90.5%, 85.3%, and 92.3%, respectively. In addition, the proposed model also showed significant accuracy improvement by inputting additional topographic information (especially the slope of slope). Compared with existing algorithms (Random forests, original DeepLabV3+, and Unet), the proposed approach in this study achieved a better accuracy-efficiency trade-off. Overall, the method can ensure high accuracy and efficiency of the LWG mapping for different loess landform types and can be extended to study various loess gully mapping and water and soil conservation.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
China Postdoctoral Science Foundation[2022M711472];National Natural Science Foundation of China[41871288];
Scopus记录号
2-s2.0-85165042440
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560222
专题工学院_环境科学与工程学院
作者单位
1.School of Geography and Tourism,Shaanxi Normal University,Xi'an,710119,China
2.National Experiment and Teaching Demonstration Center for Geography,Xi'an,710119,China
3.SuperMap Software Co.,Ltd.,Beijing,100015,China
4.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Chen,Rong,Zhou,Yi,Wang,Zetao,et al. Towards accurate mapping of loess waterworn gully by integrating google earth imagery and DEM using deep learning[J]. International Soil and Water Conservation Research,2023,12(1):13-28.
APA
Chen,Rong,Zhou,Yi,Wang,Zetao,Li,Ying,Li,Fan,&Yang,Feng.(2023).Towards accurate mapping of loess waterworn gully by integrating google earth imagery and DEM using deep learning.International Soil and Water Conservation Research,12(1),13-28.
MLA
Chen,Rong,et al."Towards accurate mapping of loess waterworn gully by integrating google earth imagery and DEM using deep learning".International Soil and Water Conservation Research 12.1(2023):13-28.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Rong]的文章
[Zhou,Yi]的文章
[Wang,Zetao]的文章
百度学术
百度学术中相似的文章
[Chen,Rong]的文章
[Zhou,Yi]的文章
[Wang,Zetao]的文章
必应学术
必应学术中相似的文章
[Chen,Rong]的文章
[Zhou,Yi]的文章
[Wang,Zetao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。