中文版 | English
题名

Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning

作者
通讯作者Wang,Guanyu
发表日期
2023-08-22
DOI
发表期刊
ISSN
2001-0370
EISSN
2001-0370
卷号21页码:3478-3489
摘要

Background: Early detection of complex diseases like hepatocellular carcinoma remains challenging due to their network-driven pathology. Dynamic network biomarkers (DNB) based on monitoring changes in molecular correlations may enable earlier predictions. However, DNB analysis often overlooks disease heterogeneity. Methods: We integrated DNB analysis with graph convolutional neural networks (GCN) to identify critical transitions during hepatocellular carcinoma development in a mouse model. A DNB-GCN model was constructed using transcriptomic data and gene expression levels as node features. Results: DNB analysis identified a critical transition point at 7 weeks of age despite histological examinations being unable to detect cancerous changes at that time point. The DNB-GCN model achieved 100% accuracy in classifying healthy and cancerous mice, and was able to accurately predict the health status of newly introduced mice. Conclusion: The integration of DNB analysis and GCN demonstrates potential for the early detection of complex diseases by capturing network structures and molecular features that conventional biomarker discovery methods overlook. The approach warrants further development and validation.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[61773196, 32070681, 22174121, 22211530067] ; Shenzhen Peacock Plan[KQTD2016053117035204] ; National Natural Science Foundation of China[T2250710180]
WOS研究方向
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS类目
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS记录号
WOS:001044818400001
出版者
EI入藏号
20232914401235
EI主题词
Biomarkers ; Complex networks ; Convolution ; Deep learning ; Diagnosis ; Gene expression ; Mammals
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Biology:461.9 ; Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722
Scopus记录号
2-s2.0-85164678931
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560231
专题生命科学学院_生物系
生命科学学院
作者单位
1.Institute of Modern Biology,Nanjing University,Nanjing,210023,China
2.Biomedical Science and Engineering,School of Medicine,The Chinese University of Hong Kong,Shenzhen,518172,China
3.Center for Endocrinology and Metabolic Diseases,Second Affiliated Hospital,The Chinese University of Hong Kong,Shenzhen,518172,China
4.Guangdong Provincial Key Laboratory of Computational Science and Material Design,Shenzhen,518055,China
5.Department of Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位生物系;  生命科学学院
通讯作者单位生物系;  生命科学学院
推荐引用方式
GB/T 7714
Han,Yukun,Akhtar,Javed,Liu,Guozhen,et al. Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning[J]. Computational and Structural Biotechnology Journal,2023,21:3478-3489.
APA
Han,Yukun,Akhtar,Javed,Liu,Guozhen,Li,Chenzhong,&Wang,Guanyu.(2023).Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning.Computational and Structural Biotechnology Journal,21,3478-3489.
MLA
Han,Yukun,et al."Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning".Computational and Structural Biotechnology Journal 21(2023):3478-3489.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Han,Yukun]的文章
[Akhtar,Javed]的文章
[Liu,Guozhen]的文章
百度学术
百度学术中相似的文章
[Han,Yukun]的文章
[Akhtar,Javed]的文章
[Liu,Guozhen]的文章
必应学术
必应学术中相似的文章
[Han,Yukun]的文章
[Akhtar,Javed]的文章
[Liu,Guozhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。