中文版 | English
题名

A priori error estimates of two monolithic schemes for Biot's consolidation model

作者
通讯作者Cai,Mingchao
发表日期
2023
DOI
发表期刊
ISSN
0749-159X
EISSN
1098-2426
卷号40期号:1
摘要
This paper concentrates on a priori error estimates of two monolithic schemes for Biot's consolidation model based on the three-field formulation introduced by Oyarzúa et al. (SIAM J Numer Anal, 2016). The spatial discretizations are based on the Taylor–Hood finite elements combined with Lagrange elements for the three primary variables. We employ two different schemes to discretize the time domain. One uses the backward Euler method, and the other applies the combination of the backward Euler and Crank-Nicolson methods. A priori error estimates show that both schemes are unconditionally convergent with optimal error orders. Detailed numerical experiments are presented to validate the theoretical analysis.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
NSF of China[11971221] ; Shenzhen Sci-Tech Fund["RCJC20200714114556020","JCYJ20170818153840322","JCYJ20190809150413261"] ; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2019B030301001] ; NIH-BUILD[UL1GM118973] ; NIH-RCMI[U54MD013376] ; National Science Foundation["1700328","1831950"] ; National Key R amp; D Program of China[2017YFB1001604]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:001018437200001
出版者
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85164192760
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560247
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.Department of Mathematics,Southern University of Science and Technology,Shenzhen,China
2.Department of High Performance Computing,National Supercomputing Center in Shenzhen,Shenzhen,China
3.Department of Mathematics,Morgan State University,Baltimore,United States
4.Department of Mathematics & National Center for Applied Mathematics Shenzhen & SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,China
第一作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Gu,Huipeng,Cai,Mingchao,Li,Jingzhi,et al. A priori error estimates of two monolithic schemes for Biot's consolidation model[J]. Numerical Methods for Partial Differential Equations,2023,40(1).
APA
Gu,Huipeng,Cai,Mingchao,Li,Jingzhi,&Ju,Guoliang.(2023).A priori error estimates of two monolithic schemes for Biot's consolidation model.Numerical Methods for Partial Differential Equations,40(1).
MLA
Gu,Huipeng,et al."A priori error estimates of two monolithic schemes for Biot's consolidation model".Numerical Methods for Partial Differential Equations 40.1(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gu,Huipeng]的文章
[Cai,Mingchao]的文章
[Li,Jingzhi]的文章
百度学术
百度学术中相似的文章
[Gu,Huipeng]的文章
[Cai,Mingchao]的文章
[Li,Jingzhi]的文章
必应学术
必应学术中相似的文章
[Gu,Huipeng]的文章
[Cai,Mingchao]的文章
[Li,Jingzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。