中文版 | English
题名

Reinforcement Learning Based Vertical Scaling for Hybrid Deployment in Cloud Computing

作者
通讯作者Li,Guiying
DOI
发表日期
2023
会议名称
the 17th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2022)
ISSN
1865-0929
EISSN
1865-0937
会议录名称
卷号
1801 CCIS
页码
408-418
会议日期
2022-12-16
会议地点
武汉
摘要

To maximize the CPU utilization of the server, offline tasks are usually deployed to the same server where the online service is running. Considering the necessity to ensure the service quality of online services, it is common practice to isolate the resources of online services. How to set the resource quota for online services not only affects the service quality of online services, but also affects the number and the stability of offline tasks that can be run on the server. Traditional rule-based methods or prediction-based methods will cause over-provision and fail to consider the stability of offline tasks, which often cannot achieve stability and efficiency. In this paper, reinforcement learning is proposed for the first time to solve the hybrid deployment of online services and offline tasks and dynamically adjust the resource quota of online services more effectively. Compared with the original state of the server, our proposed method reduces CPU idleness rate by 35.32% and increases CPU resource utilization rate by 3.84%.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20232414217635
EI主题词
Cloud computing ; Quality of service
EI分类号
Digital Computers and Systems:722.4 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85161429146
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560289
专题工学院_计算机科学与工程系
理学院_统计与数据科学系
工学院_斯发基斯可信自主研究院
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Cao,Jianqi,Li,Guiying,Yang,Peng. Reinforcement Learning Based Vertical Scaling for Hybrid Deployment in Cloud Computing[C],2023:408-418.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
6. 会议Reinforcement L(632KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao,Jianqi]的文章
[Li,Guiying]的文章
[Yang,Peng]的文章
百度学术
百度学术中相似的文章
[Cao,Jianqi]的文章
[Li,Guiying]的文章
[Yang,Peng]的文章
必应学术
必应学术中相似的文章
[Cao,Jianqi]的文章
[Li,Guiying]的文章
[Yang,Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。