题名 | OCET: One-Dimensional Convolution Embedding Transformer for Stock Trend Prediction |
作者 | |
通讯作者 | Li,Guiying |
DOI | |
发表日期 | 2023
|
ISSN | 1865-0929
|
EISSN | 1865-0937
|
会议录名称 | |
卷号 | 1801 CCIS
|
页码 | 370-384
|
摘要 | Due to the strong data fitting ability of deep learning, the use of deep learning for quantitative trading has gradually sprung up in recent years. As a classical problem of quantitative trading, Stock Trend Prediction (STP) mainly predicts the movement of stock price in the future through the historical price information to better guide quantitative trading. In recent years, some deep learning work has made great progress in STP by effectively grasping long-term timing information. However, as a kind of real-time series data, short-term timing information is also very important, because stock trading is high-frequency and price fluctuates violently. And with the popularity of Transformer, there is a lack of an effective combination of feature extraction and Transformer in STP tasks. To make better use of short term information, we propose One-dimensional Convolution Embedding (OCE). Simultaneously, we introduce effective feature extraction with Transformer into STP problem to extract feature information and capture long-term timing information. By combining OCE and Transformer organically, we propose a noval STP prediction model, One-dimensional Convolution Embedding Transformer (OCET), to capture long-term and short-term time series information. Finally, OCET achieves a highest accuracy up to 0.927 in public benchmark FI-2010 When reasoning speed is twice that of SOTA models and a highest accuracy of 0.426 in HKGSAS-2020. Empirical results on these two datasets show that our OCET is significantly superior than other algorithms in STP tasks. Code are available at https://github.com/langgege-cqu/OCET. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20232414217631
|
EI主题词 | Commerce
; Deep learning
; Electronic trading
; Embeddings
; Extraction
; Feature extraction
; Financial markets
; Forecasting
; Time series
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Chemical Operations:802.3
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85161367538
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/560294 |
专题 | 理学院_统计与数据科学系 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,518055,China 2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China 4.Shenzhen Securities Information Co.,Ltd.,Shenzhen,China |
第一作者单位 | 统计与数据科学系; 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Yang,Peng,Fu,Lang,Zhang,Jian,et al. OCET: One-Dimensional Convolution Embedding Transformer for Stock Trend Prediction[C],2023:370-384.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
5. 会议论文OCET.pdf(527KB) | 会议论文 | -- | 限制开放 | CC BY-NC-SA |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论