中文版 | English
题名

OCET: One-Dimensional Convolution Embedding Transformer for Stock Trend Prediction

作者
通讯作者Li,Guiying
DOI
发表日期
2023
ISSN
1865-0929
EISSN
1865-0937
会议录名称
卷号
1801 CCIS
页码
370-384
摘要
Due to the strong data fitting ability of deep learning, the use of deep learning for quantitative trading has gradually sprung up in recent years. As a classical problem of quantitative trading, Stock Trend Prediction (STP) mainly predicts the movement of stock price in the future through the historical price information to better guide quantitative trading. In recent years, some deep learning work has made great progress in STP by effectively grasping long-term timing information. However, as a kind of real-time series data, short-term timing information is also very important, because stock trading is high-frequency and price fluctuates violently. And with the popularity of Transformer, there is a lack of an effective combination of feature extraction and Transformer in STP tasks. To make better use of short term information, we propose One-dimensional Convolution Embedding (OCE). Simultaneously, we introduce effective feature extraction with Transformer into STP problem to extract feature information and capture long-term timing information. By combining OCE and Transformer organically, we propose a noval STP prediction model, One-dimensional Convolution Embedding Transformer (OCET), to capture long-term and short-term time series information. Finally, OCET achieves a highest accuracy up to 0.927 in public benchmark FI-2010 When reasoning speed is twice that of SOTA models and a highest accuracy of 0.426 in HKGSAS-2020. Empirical results on these two datasets show that our OCET is significantly superior than other algorithms in STP tasks. Code are available at https://github.com/langgege-cqu/OCET.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20232414217631
EI主题词
Commerce ; Deep learning ; Electronic trading ; Embeddings ; Extraction ; Feature extraction ; Financial markets ; Forecasting ; Time series
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Chemical Operations:802.3 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85161367538
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560294
专题理学院_统计与数据科学系
工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China
4.Shenzhen Securities Information Co.,Ltd.,Shenzhen,China
第一作者单位统计与数据科学系;  计算机科学与工程系
通讯作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院
第一作者的第一单位统计与数据科学系
推荐引用方式
GB/T 7714
Yang,Peng,Fu,Lang,Zhang,Jian,et al. OCET: One-Dimensional Convolution Embedding Transformer for Stock Trend Prediction[C],2023:370-384.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
5. 会议论文OCET.pdf(527KB)会议论文--限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Peng]的文章
[Fu,Lang]的文章
[Zhang,Jian]的文章
百度学术
百度学术中相似的文章
[Yang,Peng]的文章
[Fu,Lang]的文章
[Zhang,Jian]的文章
必应学术
必应学术中相似的文章
[Yang,Peng]的文章
[Fu,Lang]的文章
[Zhang,Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。