题名 | Multi-modal Segment Assemblage Network for Ad Video Editing with Importance-Coherence Reward |
作者 | |
通讯作者 | Zheng,Feng |
DOI | |
发表日期 | 2023
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 13842 LNCS
|
页码 | 560-576
|
摘要 | Advertisement video editing aims to automatically edit advertising videos into shorter videos while retaining coherent content and crucial information conveyed by advertisers. It mainly contains two stages: video segmentation and segment assemblage. The existing method performs well at video segmentation stages but suffers from the problems of dependencies on extra cumbersome models and poor performance at the segment assemblage stage. To address these problems, we propose M-SAN (Multi-modal Segment Assemblage Network) which can perform efficient and coherent segment assemblage task end-to-end. It utilizes multi-modal representation extracted from the segments and follows the Encoder-Decoder Ptr-Net framework with the Attention mechanism. Importance-coherence reward is designed for training M-SAN. We experiment on the Ads-1k dataset with 1000+ videos under rich ad scenarios collected from advertisers. To evaluate the methods, we propose a unified metric, Imp-Coh@Time, which comprehensively assesses the importance, coherence, and duration of the outputs at the same time. Experimental results show that our method achieves better performance than random selection and the previous method on the metric. Ablation experiments further verify that multi-modal representation and importance-coherence reward significantly improve the performance. Ads-1k dataset is available at: https://github.com/yunlong10/Ads-1k. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20231113699436
|
EI主题词 | Image segmentation
; Video recording
; Videodisks
|
EI分类号 | Television Systems and Equipment:716.4
; Optical Devices and Systems:741.3
|
Scopus记录号 | 2-s2.0-85149633868
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/560312 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen,China 2.Tencent Inc.,Shenzhen,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Tang,Yunlong,Xu,Siting,Wang,Teng,et al. Multi-modal Segment Assemblage Network for Ad Video Editing with Importance-Coherence Reward[C],2023:560-576.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论