[1] ZHANG J T, YANG M, LI C, et al. Near-Infrared Fluorescent Probes Basedon Piperazine-Functionalized BODIPY Dyes for Sensitive Detection ofLysosomal pH [J]. Journal of Materials Chemistry B, 2015, 3(10): 2173-84.
[2] YANG M Y, SONG Y Q, ZHANG M, et al. Converting a SolvatochromicFluorophore into a Protein-Based pH Indicator for Extreme Acidity [J].Angewandte Chemie-International Edition, 2012, 51(31): 7674-9.
[3] SCHAFERLING M. Nanoparticle-Based Luminescent Probes for IntracellularSensing and Imaging of pH [J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2016, 8(3): 378-413.
[4] CHIN M Y, PATWARDHAN A R, ANG K H, et al. Genetically Encoded, pHSensitivemTFP1 Biosensor for Probing Lysosomal pH [J]. ACS Sensors, 2021,6(6): 2168-80.
[5] DING J W, CHEN Y, WANG X W, et al. Label-Free and Substrate-FreePotentiometric Aptasensing Using Polycation-Sensitive Membrane Electrodes[J]. Analytical Chemistry, 2012, 84(4): 2055-61.
[6] WANG X W, DING J W, SONG W J, et al. Primary-Ion-ConditionedPolymeric Membrane Electrodes for Sensitive Detection of Polyions [J].Sensors and Actuators B-Chemical, 2012, 161(1): 1119-23.
[7] WANG X W, MAHONEY M, MEYERHOFF M E. Inkjet-Printed Paper-BasedColorimetric Polyion Sensor Using a Smartphone as a Detector [J]. AnalyticalChemistry, 2017, 89(22): 12334-41.
[8] ELSABAHY M, WOOLEY K L. Design of Polymeric Nanoparticles forBiomedical Delivery Applications [J]. Chemical Society Reviews, 2012, 41(7):2545-61.
[9] BALACONIS M K, CLARK H A. Biodegradable Optode-Based Nanosensorsfor in Vivo Monitoring [J]. Analytical Chemistry, 2012, 84(13): 5787-93.
[10] VALCOURT D M, DANG M N, SCULLY M A, et al. Nanoparticle-MediatedCo-Delivery of Notch-1 Antibodies and ABT-737 as a Potent TreatmentStrategy for Triple-Negative Breast Cancer [J]. ACS Nano, 2020, 14(3): 3378-88.
[11] 王毅夫. 基于软物质材料的纳米离子光学传感器 [D]. 哈尔滨:哈尔滨工业大学, 2020(2): 1-69.
[12] 李潇昂. 阴离子对基于载体的钾离子纳米传感器的影响 [D]. 哈尔滨:哈尔滨工业大学, 2019(2): 1-57.
[13] 翟晶莹. 新型荧光探针在光学传感器和生物分析中的应用 [D]. 南京:南京大学, 2013(3): 1-72.
[14] 刘玥伶. 基于新型功能化材料的电化学和光学传感器的研究 [D]. 南京:南京大学, 2015(3): 1-130.
[15] 肖宁. 有机荧光传感器/纳米复合传感材料的设计、合成及其性能研究[D]. 长春:吉林大学, 2014(3): 1-136.
[16] ROSI N L, MIRKIN C A. Nanostructures in Biodiagnostics [J]. ChemicalReviews, 2005, 105(4): 1547-62.
[17] KRAMER J, KANG R, GRIMM L M, et al. Molecular Probes, Chemosensors,and Nanosensors for Optical Detection of Biorelevant Molecules and Ions inAqueous Media and Biofluids [J]. Chemical Reviews, 2022, 122(3): 3459-636.
[18] RIDEAU E, DIMOVA R, SCHWILLE P, et al. Liposomes and Polymersomes:a Comparative Review Towards Cell Mimicking [J]. Chemical SocietyReviews, 2018, 47(23): 8572-610.
[19] LIU X Y, LI C, LV J, et al. Glucose and H2O2 Dual-Responsive PolymericMicelles for the Self-Regulated Release of Insulin [J]. ACS Applied BioMaterials, 2020, 3(3): 1598-606.
[20] MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al. EngineeringPrecision Nanoparticles for Drug Delivery [J]. Nature Reviews DrugDiscovery, 2021, 20(2): 101-24.
[21] CLARK H A, HOYER M, PHILBERT M A, et al. Optical Nanosensors forChemical Analysis Inside Single Living Cells. 1. Fabrication, Characterization,and Methods for Intracellular Delivery of PEBBLE Sensors [J]. AnalyticalChemistry, 1999, 71(21): 4831-6.
[22] BUCK S M, XU H, BRASUEL M, et al. Nanoscale Probes Encapsulated byBiologically Localized Embedding (PEBBLEs) for Ion Sensing and Imagingin Live Cells [J]. Talanta, 2004, 63(1): 41-59.
[23] LEE Y E K, KOPELMAN R. Nanoparticle PEBBLE Sensors in Live Cells[M]//Imaging and Spectroscopic Analysis of Living Cells: Optical andSpectroscopic Techniques. 2012, 504: 419-70.
[24] BORISOV S M, MAYR T, KLIMANT I. Poly(styrene-block-vinylpyrrolidone)Beads as a Versatile Material for Simple Fabrication o f Optical Nanosensors[J]. Analytical Chemistry, 2008, 80(3): 573-82.
[25] BORISOV S M, HERROD D L, KLIMANT I. Fluorescent Poly(styreneblock-vinylpyrrolidone) Nanobeads for Optical Sensing of pH [J]. Sensors andActuators B-Chemical, 2009, 139(1): 52-8.
[26] QIN Y, MI Y M, BAKKER E. Determination of Complex Formation Constantsof 18 Neutral Alkali and Alkaline Earth Metal Ionophores in Poly(vinylchloride) Sensing Membranes Plasticized with Bis(2-ethylhexyl)sebacate andO-nitrophenyloctylether [J]. Analytica Chimica Acta, 2000, 421(2): 207-20.
[27] XIE X J, BAKKER E. Determination of Effective Stability Constants of Ion-Carrier Complexes in Ion Selective Nanospheres with ChargedSolvatochromic Dyes [J]. Analytical Chemistry, 2015, 87(22): 11587-91.
[28] DU X F, WANG R J, ZHAI J Y, et al. Ionophore-Based Ion-SelectiveNanosensors from Brush Block Copolymer Nanodots [J]. ACS Applied NanoMaterials, 2020, 3(1): 782-8.
[29] TRIBUSER L, BORISOV S M, KLIMANT I. Tuning the Sensitivity ofFluoroionophore-Based K+ Sensors via Variation of Polymer Matrix: AComparative Study [J]. Sensors and Actuators B-Chemical, 2020,312(127940): 1-6.
[30] KHALIN I, HEIMBURGER D, MELNYCHUK N, et al. UltrabrightFluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for LiveTracking in the Mouse Brain [J]. ACS Nano, 2020, 14(8): 9755-70.
[31] COLLOT M, SCHILD J, FAM K T, et al. Stealth and Bright MonomolecularFluorescent Organic Nanoparticles Based on Folded Amphiphilic Polymer [J].ACS Nano, 2020, 14(10): 13924-37.
[32] LAVIS L D, RAINES R T. Bright Ideas for Chemical Biology [J]. ACSChemical Biology, 2008, 3(3): 142-55.
[33] MADSEN J, CANTON I, WARREN N J, et al. Nile Blue-Based Nanosized pHSensors for Simultaneous Far-Red and Near-Infrared Live Bioimaging [J].Journal of the American Chemical Society, 2013, 135(39): 14863-70.
[34] 都新丰,翟晶莹,谢小江. 基于离子载体的电化学和光学传感系统[C]//中国化学会第十二届全国微全分析系统学术会议、第七届全国微纳尺度生物分离分析学术会议、第七届国际微流控学学术论坛、The 11th InternationalSymposium on Microchemistry and Microsystems 摘要集. 西安, 中国化学会, 2019: 1-58.
[35] TANG L, YANG X J, YIN Q, et al. Investigating the Optimal Size ofAnticancer Nanomedicine [J]. Proceedings of the National Academy ofSciences of the United States of America, 2014, 111(43): 15344-9.
[36] KENRY, YEO T, MANGHNANI P N, et al. Mechanistic Understanding of theBiological Responses to Polymeric Nanoparticles [J]. ACS Nano, 2020, 14(4):4509-22.
[37] FIELD L D, DELEHANTY J B, CHEN Y C, et al. Peptides for SpecificallyTargeting Nanoparticles to Cellular Organelles: Quo Vadis? [J]. Accounts ofChemical Research, 2015, 48(5): 1380-90.
[38] BEHZADI S, SERPOOSHAN V, TAO W, et al. Cellular Uptake ofNanoparticles: Journey Inside the Cell [J]. Chemical Society Reviews, 2017,46(14): 4218-44.
[39] OH N, PARK J H. Endocytosis and Exocytosis of Nanoparticles inMammalian Cells [J]. International Journal of Nanomedicine, 2014,9(Supplement 1): 51-63.
[40] YAMEEN B, CHOI W I, VILOS C, et al. Insight into Nanoparticle CellularUptake and Intracellular Targeting [J]. Journal of Controlled Release, 2014,190: 485-99.
[41] TSAI Y T, ZHOU J, WENG H, et al. Real-Time Noninvasive Monitoring of InVivo Inflammatory Responses using a pH Ratiometric Fluorescence ImagingProbe [J]. Advanced Healthcare Materials, 2014, 3(2): 221-9.
[42] IVERSEN T G, SKOTLAND T, SANDVIG K. Endocytosis and IntracellularTransport of Nanoparticles: Present Knowledge and Need for Future Studies[J]. Nano Today, 2011, 6(2): 176-85.
[43] DOHERTY G J, MCMAHON H T. Mechanisms of Endocytosis [J]. AnnualReview of Biochemistry, 2009, 78: 857-902.
[44] YOUNG K D. The Selective Value of Bacterial Shape [J]. Microbiology andMolecular Biology Reviews, 2006, 70(3): 660-703.
[45] SMITH C J, GRIGORIEFF N, PEARSE B M F. Clathrin Coats at 21 AngstromResolution: A Cellular Assembly Designed to Recycle Multiple MembraneReceptors [J]. EMBO Journal, 1998, 17(17): 4943-53.
[46] FORD M G J, MILLS I G, PETER B J, et al. Curvature of Clathrin-CoatedPits Driven by Epsin [J]. Nature, 2002, 419(6905): 361-6.
[47] EHRLICH M, BOLL W, VAN OIJEN A, et al. Endocytosis by RandomInitiation and Stabilization of Clathrin-Coated Pits [J]. Cell, 2004, 118(5):591-605.
[48] ANDERSON R G W. The Caveolae Membrane System [J]. Annual Review ofBiochemistry, 1998, 67: 199-225.
[49] GRUENBERG J, STENMARK H. The Biogenesis of MultivesicularEndosomes [J]. Nature Reviews Molecular Cell Biology, 2004, 5(4): 317-23.
[50] LUZIO J P, PRYOR P R, BRIGHT N A. Lysosomes: Fusion and Function [J].Nature Reviews Molecular Cell Biology, 2007, 8(8): 622-32.
[51] SAFTIG P, KLUMPERMAN J. Lysosome Biogenesis and LysosomalMembrane Proteins: Trafficking Meets Function [J]. Nature ReviewsMolecular Cell Biology, 2009, 10(9): 623-35.
[52] VIDA T, GERHARDT B. A Cell-Free Assay Allows Reconstitution ofVps33p-Dependent Transport to the Yeast Vacuole/Lysosome [J]. Journal ofCell Biology, 1999, 146(1): 85-97.
[53] PRYOR P R, MULLOCK B M, BRIGHT N A, et al. Combinatorial SNAREComplexes with VAMP7 or VAMP8 Define Different Late Endocytic FusionEvents [J]. EMBO Reports, 2004, 5(6): 590-5.
[54] SCOTT C C, GRUENBERG J. Ion Flux and the Function of Endosomes andLysosomes: pH is Just the Start [J]. Bioessays, 2011, 33(2): 103-10.
[55] YAMADA Y, HARASHIMA H. Enhancement in Selective MitochondrialAssociation by Direct Modification of a Mitochondrial Targeting SignalPeptide on a Liposomal Based Nanocarrier [J]. Mitochondrion, 2013, 13(5):526-32.
[56] KAWAMURA E, YAMADA Y, HARASHIMA H. Mitochondrial TargetingFunctional Peptides as Potential Devices for the Mitochondrial Delivery of aDF-MITO-Porter [J]. Mitochondrion, 2013, 13(6): 610-4.
[57] LIAN Y, LIN Z, ZHANG Z, et al. Active-Targeting Polymeric DualNanosensor for Ratiometrically Measuring Proton and Oxygen Concentrationsin Mitochondria [J]. Analytical Chemistry, 2021, 93(23): 8291-9.
[58] TORCHILIN V P. Recent Approaches to Intracellular Delivery of Drugs andDNA and Organelle Targeting [J]. Annual Review of Biomedical Engineering,2006, 8: 343-75.
[59] XU P S, VAN KIRK E A, ZHAN Y H, et al. Targeted Charge-ReversalNanoparticles for Nuclear Drug Delivery [J]. Angewandte Chemie-International Edition, 2007, 46(26): 4999-5002.
[60] DERFUS A M, CHAN W C W, BHATIA S N. Intracellular Delivery ofQuantum Dots for Live Cell Labeling and Organelle Tracking [J]. AdvancedMaterials, 2004, 16(12): 961-6.
[61] CHENG F Y, WANG S P H, SU C H, et al. Stabilizer-Free Poly(lactide-coglycolide)Nanoparticles for Multimodal Biomedical Probes [J]. Biomaterials,2008, 29(13): 2104-12.
[62] SUKUMARAN P, SCHAAR A, SUN Y Y, et al. Functional Role of TRPChannels in Modulating ER Stress and Autophagy [J]. Cell Calcium, 2016,60(2): 123-32.
[63] AKIMOTO J, NAKAYAMA M, SAKAI K, et al. Thermally ControlledIntracellular Uptake System of Polymeric Micelles Possessing Poly(Nisopropylacrylamide)-Based Outer Coronas [J]. Molecular Pharmaceutics,2010, 7(4): 926-35.
[64] WANG J, FANG X C, LIANG W. Pegylated Phospholipid Micelles InduceEndoplasmic Reticulum-Dependent Apoptosis of Cancer Cells but not NormalCells [J]. ACS Nano, 2012, 6(6): 5018-30.
[65] FLINCK M, KRAMER S H, PEDERSEN S F. Roles of pH in Control of CellProliferation [J]. Acta Physiologica, 2018, 223(3): 1-17.
[66] THOMAS J A, BUCHSBAUM R N, ZIMNIAK A, et al. Intracellular pHMeasurements in Ehrlich Ascites Tumor-Cells Utilizing Spectroscopic ProbesGenerated Institu [J]. Biochemistry, 1979, 18(11): 2210-8.
[67] FENG Z Z, MA Y Y, LI B J, et al. Mitochondria Targeted Self-AssembledRatiometric Fluorescent Nanoprobes for pH Imaging in Living Cells [J].Analytical Methods, 2019, 11(15): 2097-104.
[68] JOHNSON D E, OSTROWSKI P, JAUMOUILLE V, et al. The Position ofLysosomes within the Cell Determines Their Luminal pH [J]. Journal of CellBiology, 2016, 212(6): 677-92.
[69] ZHAO J C, STENZEL M H. Entry of Nanoparticles into Cells: The Importanceof Nanoparticle Properties [J]. Polymer Chemistry, 2018, 9(3): 259-72.
[70] HOWES P D, CHANDRAWATI R, STEVENS M M. Colloidal Nanoparticlesas Advanced Biological Sensors [J]. Science, 2014, 346(6205): 53-63.
[71] SIGAEVA A, ONG Y, DAMLE V G, et al. Optical Detection of IntracellularQuantities Using Nanoscale Technologies [J]. Accounts of Chemical Research,2019, 52(7): 1739-49.
[72] BENJAMINSEN R V, SUN H H, HENRIKSEN J R, et al. EvaluatingNanoparticle Sensor Design for Intracellular pH Measurements [J]. ACS Nano,2011, 5(7): 5864-73.
[73] SUN H H, ALMDAL K, ANDRESEN T L. Expanding the DynamicMeasurement Range for Polymeric Nanoparticle pH Sensors [J]. ChemicalCommunications, 2011, 47(18): 5268-70.
[74] SHI W, LI X H, MA H M. Fluorescent Probes and Nanoparticles forIntracellular Sensing of pH Values [J]. Methods and Applications inFluorescence, 2014, 2(4): 042001-14.
[75] CHIDAMBARAM M, KRISHNASAMY K. Modifications to theConventional Nanoprecipitation Technique: An Approach to Fabricate NarrowSized Polymeric Nanoparticles [J]. Advanced Pharmaceutical Bulletin, 2014,4(2): 205-8.
[76] XIE X, MISTLBERGER G, BAKKER E. Ultrasmall Fluorescent Ion-Exchanging Nanospheres Containing Selective Ionophores [J]. AnalyticalChemistry, 2013, 85(20): 9932-8.
[77] DENG L, ZHAI J Y, DU X F, et al. Ionophore-Based Ion-SelectiveNanospheres Based on Monomer-Dimer Conversion in the Near-InfraredRegion [J]. ACS Sensors, 2021, 6(3): 1279-85.
[78] GUO C, ZHAI J Y, WANG Y F, et al. Wash-Free Detection of Nucleic Acidswith Photoswitch-Mediated Fluorescence Resonance Energy Transfer againstOptical Background Interference [J]. Analytical Chemistry, 2021, 93(23):8128-33.
[79] SALIM M M, OWENS E A, GAO T L, et al. Hydroxylated Near-InfraredBODIPY Fluorophores as Intracellular pH Sensors [J]. Analyst, 2014, 139(19):4862-73.
[80] DALFEN I, DMITRIEV R I, HOLST G, et al. Background-Free Fluorescence-Decay-Time Sensing and Imaging of pH with Highly PhotostableDiazaoxotriangulenium Dyes [J]. Analytical Chemistry, 2019, 91(1): 808-16.
[81] CAO L X, LI X Y, WANG S Q, et al. A Novel Nanogel-Based FluorescentProbe for Ratiometric Detection of Intracellular pH Values [J]. ChemicalCommunications, 2014, 50(63): 8787-90.
[82] SHAMSIPUR M, BARATI A, NEMATIFAR Z. Fluorescent pH Nanosensors:Design Strategies and Applications [J]. Journal of Photochemistry andPhotobiology C-Photochemistry Reviews, 2019, 39: 76-141.
[83] FRANKAER C G, ROSENBERG M, SANTELLA M, et al. Tuning the pK(a)of a pH Responsive Fluorophore and the Consequences for Calibration ofOptical Sensors Based on a Single Fluorophore but Multiple Receptors [J].ACS Sensors, 2019, 4(3): 764-73.
[84] ROSENBERG M, JUNKER A K R, SORENSEN T J, et al. Fluorescence pHProbes Based on Photoinduced Electron Transfer Quenching of LongFluorescence Lifetime Triangulenium Dyes [J]. Chemphotochem, 2019, 3(5):233-42.
[85] XIE X J, BAKKER E. Ion Selective Optodes: From the Bulk to the Nanoscale[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-910.
[86] DU X F, XIE X J. Ion-Selective Optodes: Alternative Approaches forSimplified Fabrication and Signaling [J]. Sensors and Actuators B-Chemical,2021, 335(129368): 1-16.
[87] BAKKER E, BUHLMANN P, PRETSCH E. Carrier-Based Ion-SelectiveElectrodes and Bulk Optodes. 1. General Characteristics [J]. ChemicalReviews, 1997, 97(8): 3083-132.
[88] ZHONG Z L, ANSLYN E V. A Colorimetric Sensing Ensemble for Heparin[J]. Journal of the American Chemical Society, 2002, 124(31): 9014-5.
[89] BROMFIELD S M, WILDE E, SMITH D K. Heparin Sensing and Binding -Taking Supramolecular Chemistry Towards Clinical Applications [J].Chemical Society Reviews, 2013, 42(23): 9184-95.
[90] FERGUSON S A, MEYERHOFF M E. Advances in Electrochemical andOptical Polyion Sensing: A Review [J]. Sensors and Actuators B-Chemical,2018, 272: 643-54.
[91] CRESPO G A, AFSHAR M G, BAKKER E. Reversible Sensing of theAnticoagulant Heparin with Protamine Permselective Membranes [J].Angewandte Chemie-International Edition, 2012, 51(50): 12575-8.
[92] FU B, BAKKER E, YUN J H, et al. Response Mechanism of PolymerMembrane-Based Potentiometric Polyion Sensors [J]. Analytical Chemistry,1994, 66(14): 2250-9.
[93] MA S C, YANG V C, MEYERHOFF M E. Heparin-ResponsiveElectrochemical Sensor - A Preliminary Study [J]. Analytical Chemistry, 1992,64(6): 694-7.
[94] RAMAMURTHY N, BALIGA N, WAHR J A, et al. Improved Protamine-Sensitive Membrane Electrode for Monitoring Heparin Concentrations inWhole Blood via Protamine Titration [J]. Clinical Chemistry, 1998, 44(3):606-13.
[95] SHVAREV A, BAKKER E. Reversible Electrochemical Detection ofNonelectroactive Polyions [J]. Journal of the American Chemical Society,2003, 125(37): 11192-3.
[96] FERGUSON S A, MEYERHOFF M E. Manual and Flow-InjectionDetection/Quantification of Polyquaterniums via Fully Reversible Polyion-Sensitive Polymeric Membrane-Based Ion-Selective Electrodes [J]. ACSSensors, 2017, 2(10): 1505-11.
[97] WANG E J, MEYERHOFF M E, YANG V C. Optical-Detection ofMacromolecular Heparin via Selective Coextraction into Thin PolymericFilms [J]. Analytical Chemistry, 1995, 67(3): 522-7.
[98] DURUST N, MEYERHOFF M E, UNAL N, et al. SpectrophotometricDetermination of Various Polyanions with Polymeric Film Optodes UsingMicrotiter Plate Reader [J]. Analytica Chimica Acta, 2011, 699(1): 107-12.
[99] DAI S, YE Q S, WANG E J, et al. Optical Detection of Polycations viaPolymer Film-Modified Microtiter Plates: Response Mechanism andBioanalytical Applications [J]. Analytical Chemistry, 2000, 72(14): 3142-9.
[100] DU X F, YANG L Y, HU W C, et al. A Plasticizer-Free Miniaturized OpticalIon Sensing Platform with Ionophores and Silicon-Based Particles [J].Analytical Chemistry, 2018, 90(9): 5818-24.
[101] WANG R J, DU X F, WU Y T, et al. Graphene Quantum Dots Integrated inlonophore-Based Fluorescent Nanosensors for Na+ and K+ [J]. ACS Sensors,2018, 3(11): 2408-14.
[102] DU X F, XIE X J. Non-Equilibrium Diffusion Controlled Ion-Selective OpticalSensor for Blood Potassium Determination [J]. ACS Sensors, 2017, 2(10):1410-4.
[103] KLUCINSKA K, STELMACH E, KISIEL A, et al. Nanoparticles ofFluorescent Conjugated Polymers: Novel Ion-Selective Optodes [J].Analytical Chemistry, 2016, 88(11): 5644-8.
[104] RUCKH T T, SKIPWITH C G, CHANG W D, et al. Ion-Switchable QuantumDot Forster Resonance Energy Transfer Rates in Ratiometric PotassiumSensors [J]. ACS Nano, 2016, 10(4): 4020-30.
[105] LEE C H, FOLZ J, ZHANG W L, et al. Ion-Selective Nanosensor forPhotoacoustic and Fluorescence Imaging of Potassium [J]. AnalyticalChemistry, 2017, 89(15): 7943-9.
[106] XIE X J, ZHAI J Y, CRESPO G A, et al. Ionophore-Based Ion-SelectiveOptical NanoSensors Operating in Exhaustive Sensing Mode [J]. AnalyticalChemistry, 2014, 86(17): 8770-5.
[107] SODA Y, ROBINSON K J, NUSSBAUM R, et al. Protamine/Heparin OpticalNanosensors Based on Solvatochromism [J]. Chemical Science, 2021, 12(47):15596-602.
[108] BOURASSA M W, MILLER L M. Metal Imaging in NeurodegenerativeDiseases [J]. Metallomics, 2012, 4(8): 721-38.
[109] FREDERICKSON C J, KOH J Y, BUSH A I. The Neurobiology of Zinc inHealth and Disease [J]. Nature Reviews Neuroscience, 2005, 6(6): 449-62.
[110] BOLOGNIN S, MESSORI L, ZATTA P. Metal Ion Physiopathology inNeurodegenerative Disorders [J]. Neuromolecular Medicine, 2009, 11(4):223-38.
[111] WILLIAMS D R. Metals, Ligands, and Cancer [J]. Chemical Reviews, 1972,72(3): 203-213.
[112] BARNHAM K J, BUSH A I. Metals in Alzheimer's and Parkinson's diseases[J]. Current Opinion in Chemical Biology, 2008, 12(2): 222-8.
[113] GUPTE A, MUMPER R J. Elevated Copper and Oxidative: Stress in CancerCells as a Target for Cancer Treatment [J]. Cancer Treatment Reviews, 2009,35(1): 32-46.
[114] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death [J]. Cell, 2012, 149(5): 1060-72.
[115] TSVETKOV P, COY S, PETROVA B, et al. Copper Induces Cell Death byTargeting Lipoylated TCA Cycle Proteins [J]. Science, 2022, 375(6586):1254-1261.
[116] LI Z P, HOU J T, WANG S, et al. Recent Advances of Luminescent Sensorsfor Iron and Copper: Platforms, Mechanisms, and Bio-Applications [J].Coordination Chemistry Reviews, 2022, 469(214695): 1-37.
[117] WU J S, KWON B, LIU W M, et al. Chromogenic/Fluorogenic EnsembleChemosensing Systems [J]. Chemical Reviews, 2015, 115(15): 7893-943.
[118] ZHAN L M, TIAN Y. Designing Recognition Molecules and TailoringFunctional Surfaces for In Vivo Monitoring of Small Molecules in the Brain[J]. Accounts of Chemical Research, 2018, 51(3): 688-96.
[119] WANG P, FU J X, YAO K, et al. A Novel Quinoline-Derived Fluorescent"Turn-on" Probe for Cu2+ with Highly Selectivity and Sensitivity and ItsApplication in Cell Imaging [J]. Sensors and Actuators B-Chemical, 2018,273(1070): 1-6.
[120] VETRIK M, MATTOVA J, MACKOVA H, et al. Biopolymer Strategy for theTreatment of Wilson's Disease [J]. Journal of Controlled Release, 2018, 273:131-8.
[121] YOU J, LEE S, TARK H J, et al. Optical Detection of Copper Ions viaStructural Dissociation of Plasmonic Sugar Nanoprobes [J]. AnalyticalChemistry, 2022, 94(14): 5521-9.
[122] LEE S, BARIN G, ACKERMAN C M, et al. Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease[J]. Journal of the American Chemical Society, 2016, 138(24): 7603-9.
[123] LEE S, CHUNG C Y S, LIU P, et al. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools ofLabile Brain Copper [J]. Journal of the American Chemical Society, 2020,142(35): 14993-5003.
[124] ZHU A W, QU Q, SHAO X L, et al. Carbon-Dot-Based Dual-EmissionNanohybrid Produces a Ratiometric Fluorescent Sensor for In Vivo Imagingof Cellular Copper Ions [J]. Angewandte Chemie-International Edition, 2012,51(29): 7185-9.
[125] LIU J Q, LIU Z C, WANG W K, et al. Real-Time Tracking and Sensing of Cu+and Cu2+ with a Single SERS Probe in the Live Brain: Toward UnderstandingWhy Copper Ions Were Increased upon Ischemia [J]. Angewandte Chemie-International Edition, 2021, 60(39): 21351-9.
[126] ZHANG L M, HAN Y Y, ZHAO F, et al. A Selective and Accurate RatiometricElectrochemical Biosensor for Monitoring of Cu2+ Ions in a Rat Brain [J].Analytical Chemistry, 2015, 87(5): 2931-6.
[127] LUO Y P, ZHANG L M, LIU W, et al. A Single Biosensor for Evaluating theLevels of Copper Ion and L-Cysteine in a Live Rat Brain with Alzheimer'sDisease [J]. Angewandte Chemie-International Edition, 2015, 54(47): 14053-6.
[128] SUMNER J P, WESTERBERG N M, STODDARD A K, et al. Cu+- and Cu2+-Sensitive PEBBLE Fluorescent Nanosensors Using DsRed as the RecognitionElement [J]. Sensors and Actuators B-Chemical, 2006, 113(2): 760-7.
[129] ZIELINSKA A, CARREIRO F, OLIVEIRA A M, et al. PolymericNanoparticles: Production, Characterization, Toxicology and Ecotoxicology[J]. Molecules, 2020, 25(16): 3731-20.
[130] CASEY J R, GRINSTEIN S, ORLOWSKI J. Sensors and Regulators ofIntracellular pH [J]. Nature Reviews Molecular Cell Biology, 2010, 11(1): 50-61.
[131] WHITTEN S T, GARCIA-MORENO B, HILSER V J. Local ConformationalFluctuations can Modulate the Coupling Between Proton Binding and GlobalStructural Transitions in Proteins [J]. Proceedings of the National Academy ofSciences of the United States of America, 2005, 102(12): 4282-7.
[132] THANGARAJU M, SHARMA K, LIU D N, et al. Interdependent Regulationof Intracellular Acidification and SHP-1 in Apoptosis [J]. Cancer Research,1999, 59(7): 1649-54.
[133] ANDRESEN T L, JENSEN S S, JORGENSEN K. Advanced Strategies inLiposomal Cancer Therapy: Problems and Prospects of Active and TumorSpecific Drug Release [J]. Progress in Lipid Research, 2005, 44(1): 68-97.
[134] JOLCK R I, FELDBORG L N, ANDERSEN S, et al. Engineering Liposomesand Nanoparticles for Biological Targeting [M]//NYANHONGO G S,STEINER W, GUBITZ G M. Biofunctionalization of Polymers and TheirApplications. 2011: 251-80.
[135] LI J, ZHAI J Y, WANG Y F, et al. Dual Functional Luminescent Nanoprobesfor Monitoring Oxygen and Chloride Concentration Changes in Cells [J].Chemical Communications, 2020, 56(95): 14980-14983.
[136] BOYA P, KROEMER G. Lysosomal Membrane Permeabilization in Cell Death[J]. Oncogene, 2008, 27(50): 6434-51.
[137] JOHANSSON A C, APPELQVIST H, NILSSON C, et al. Regulation ofApoptosis-Associated Lysosomal Membrane Permeabilization [J]. Apoptosis,2010, 15(5): 527-40.
[138] FORGAC M. Vacuolar ATPases: Rotary Proton Pumps in Physiology andPathophysiology [J]. Nature Reviews Molecular Cell Biology, 2007, 8(11):917-29.
[139] YOSHIMORI T, YAMAMOTO A, MORIYAMA Y, et al. Bafilomycin-A1, ASpecific Inhibitor of Vacuolar-Type H+-Atpase, Inhibitis Acidification andProtein-Degradation in Lysosomes of Cultured-Cells [J]. Journal of BiologicalChemistry, 1991, 266(26): 17707-12.
[140] ORTE A, ALVAREZ-PEZ J M, RUEDAS-RAMA M J. Fluorescence LifetimeImaging Microscopy for the Detection of Intracellular pH with Quantum DotNanosensors [J]. ACS Nano, 2013, 7(7): 6387-95.
[141] BALUT C, VANDEVEN M, DESPA S, et al. Measurement of Cytosolic andMitochondrial pH in Living Cells During Reversible Metabolic Inhibition [J].Kidney International, 2008, 73(2): 226-32.
[142] CHAN K W Y, LIU G S, SONG X L, et al. MRI-Detectable pH NanosensorsIncorporated into Hydrogels for in Vivo Sensing of Transplanted-CellViability [J]. Nature Materials, 2013, 12(3): 268-75.
[143] WANG X D, STOLWIJK J A, LANG T, et al. Ultra-Small, Highly Stable, andSensitive Dual Nanosensors for Imaging Intracellular Oxygen and pH inCytosol [J]. Journal of the American Chemical Society, 2012, 134(41): 17011-4.
[144] QIN F Y, ZHANG Y R, ZHU J M, et al. A Mitochondrial-Targeted FluorescentProbe to Sense pH and HOCl in Living Cells [J]. Sensors and Actuators BChemical,2019, 291: 207-15.
[145] MIAO X Y, ZHU Z Q, JIA H S, et al. Colorimetric Detection of CancerBiomarker Based on Enzyme Enrichment and pH Sensing [J]. Sensors andActuators B-Chemical, 2020, 320(128435): 1-8.
[146] BELL-VLASOY A K, ZAJDA J, ELDOURGHAMY A, et al. PolyionSelective Polymeric Membrane-Based Pulstrode as a Detector in Flow-Injection Analysis [J]. Analytical Chemistry, 2014, 86(8): 4041-6.
[147] YE Q S, MEYERHOFF M E. Rotating electrode potentiometry: Lowering theDetection Limits of Nonequilibrium Polyion-Sensitive Membrane Electrodes[J]. Analytical Chemistry, 2001, 73(2): 332-6.
[148] AMEMIYA S, YANG X T, WAZENEGGER T L. Voltammetry of the PhaseTransfer of Polypeptide Protamines Across Polarized Liquid/Liquid Interfaces[J]. Journal of the American Chemical Society, 2003, 125(39): 11832-3.
[149] YUAN Y, AMEMIYA S. Facilitated Protamine Transfer at PolarizedWater/1,2-dichloroethane Interfaces Studied by Cyclic Voltammetry andChronoamperometry at Micropipet Electrodes [J]. Analytical Chemistry, 2004,76(23): 6877-86.
[150] GARADA M B, KABAGAMBE B, AMEMIYA S. Extraction or Adsorption?Voltammetric Assessment of Protamine Transfer at Ionophore-BasedPolymeric Membranes [J]. Analytical Chemistry, 2015, 87(10): 5348-55.
[151] BUHLMANN P, PRETSCH E, BAKKER E. Carrier-Based Ion-SelectiveElectrodes and Bulk Optodes. 2. Ionophores for Potentiometric and OpticalSensors [J]. Chemical Reviews, 1998, 98(4): 1593-687.
[152] DU X F, ZHU C Y, XIE X J. Thermochromic Ion-Exchange MicellesContaining H+ Chromoionophores [J]. Langmuir, 2017, 33(23): 5910-4.
[153] ZHAI J Y, XIE X J, BAKKER E. Ion-Selective Optode Nanospheres asHeterogeneous Indicator Reagents in Complexometric Titrations [J].Analytical Chemistry, 2015, 87(5): 2827-31.
[154] XIE X J, BAKKER E. Light-Controlled Reversible Release and Uptake ofPotassium Ions from Ion-Exchanging Nanospheres [J]. ACS Applied Materials& Interfaces, 2014, 6(4): 2666-70.
[155] XIE X, ZHAI J, BAKKER E. pH Independent Nano-Optode Sensors Based onExhaustive Ion-Selective Nanospheres [J]. Analytical Chemistry, 2014, 86(6):2853-6.
[156] LI Y, SUN H C, SHI F P, et al. Multi-Positively Charged DendrimericNanoparticles Induced Fluorescence Quenching of Graphene Quantum Dotsfor Heparin and Chondroitin Sulfate Detection [J]. Biosensors &Bioelectronics, 2015, 74: 284-90.
[157] ZENG Y, PEI J J, WANG L H, et al. A Sensitive Sequential 'On/Off SERSAssay for Heparin with Wider Detection Window and Higher ReliabilityBased on the Reversed Surface Charge Changes of Functionalized Au@AgNanoparticles [J]. Biosensors & Bioelectronics, 2015, 66: 55-61.
[158] SINDUJA B, GOWTHAMAN N S K, JOHN S A. Selective and SensitiveDetermination of the Antidote of Heparin Using Ag-GQDs by OpticalMethods [J]. Analytical Methods, 2018, 10(17): 1999-2006.
[159] HU L Z, LIAO H, FENG L Y, et al. Accelerating the Peroxidase-Like Activityof Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin andHeparinase Activity [J]. Analytical Chemistry, 2018, 90(10): 6247-52.
[160] JIANG R, ZHAO S, CHEN L K, et al. Fluorescence Detection of Protamine,Heparin and Heparinase II Based on a Novel AIE Molecule with FourCarboxyl [J]. International Journal of Biological Macromolecules, 2020, 156:1153-9.
[161] JENA B K, RAJ C R. Optical Sensing of Biomedically Important PolyionicDrugs Using Nano-Sized Gold Particles [J]. Biosensors & Bioelectronics,2008, 23(8): 1285-90.
[162] ESKO J D, SELLECK S B. Order Out of Chaos: Assembly of Ligand BindingSites in Heparan Sulfate [J]. Annual Review of Biochemistry, 2002, 71: 435-71.
[163] ZHENG J, YE T, CHEN J Y, et al. Highly Sensitive Fluorescence Detection ofHeparin Based on Aggregation Induced Emission of a TetraphenyletheneDerivative [J]. Biosensors & Bioelectronics, 2017, 90: 245-50.
[164] LIU H L, SONG P S, WEI R R, et al. A Facile, Sensitive and SelectiveFluorescent Probe for Heparin Based on Aggregation-Induced Emission [J].Talanta, 2014, 118: 348-52.
[165] GE E J, BUSH A I, CASINI A, et al. Connecting Copper and Cancer: FromTransition Metal Signalling to Metalloplasia [J]. Nature Reviews Cancer, 2022,22(2): 102-13.
[166] LIPPARD S J. Biochemistry - Free copper ions in the cell? [J]. Science, 1999,284(5415): 748-9.
[167] SAILER A, MEIRING J C M, HEISE C, et al. Pyrrole HemithioindigoAntimitotics with Near-Quantitative Bidirectional Photoswitching thatPhotocontrol Cellular Microtubule Dynamics with Single-Cell Precision [J].Angewandte Chemie-International Edition, 2021, 60(44): 23695-704.
[168] WIEDBRAUK S, DUBE H. Hemithioindigo-An Emerging Photoswitch [J].Tetrahedron Letters, 2015, 56(29): 4266-74.
[169] PETERMAYER C, THUMSER S, KINK F, et al. Hemiindigo: Highly BistablePhotoswitching at the Biooptical Window [J]. Journal of the AmericanChemical Society, 2017, 139(42): 15060-7.
[170] PETERMAYER C, DUBE H. Indigoid Photoswitches: Visible LightResponsive Molecular Tools [J]. Accounts of Chemical Research, 2018, 51(5):1153-63.
[171] ROHINI, PAUL K, LUXAMI V. 8-Hydroxyquinoline Fluorophore for Sensingof Metal Ions and Anions [J]. Chemical Record, 2020, 20(12): 1430-73.
[172] YUAN Z Y, LI T Y, ZHANG J F, et al. Fluorescence-Based Method for FastQuantification of Active Aluminums in Natural and Treated Water [J]. Journalof Hazardous Materials, 2022, 433(128815): 1-12.
[173] ZWEIG J E, NEWHOUSE T R. Isomer-Specific Hydrogen Bonding as aDesign Principle for Bidirectionally Quantitative and RedshiftedHemithioindigo Photoswitches [J]. Journal of the American Chemical Society,2017, 139(32): 10956-9.
[174] PETERMAYER C, DUBE H. Circular Dichroism Photoswitching with a Twist:Axially Chiral Hemiindigo [J]. Journal of the American Chemical Society,2018, 140(42): 13558-61.
[175] BARTELMANN T, GNANNT F, ZITZMANN M, et al. Sulfoxidehemithioindigo tweezers - visible light addressable capture and release [J].Chemical Science, 2021, 12(10): 3651-9.
[176] RENNY J S, TOMASEVICH L L, TALLMADGE E H, et al. Method ofContinuous Variations: Applications of Job Plots to the Study of MolecularAssociations in Organometallic Chemistry [J]. Angewandte Chemie-International Edition, 2013, 52(46): 11998-2013.
[177] ZHAI J Y, XIE X J, CHERUBINI T, et al. Ionophore-Based TitrimetricDetection of Alkali Metal Ions in Serum [J]. ACS Sensors, 2017, 2(4): 606-12.
[178] ZHAI J Y, ZHU C Y, PENG X L, et al. Ionophore-Based HeterogeneousCalcium Optical Titration [J]. Electroanalysis, 2018, 30(4): 705-9.
[179] ZHOU W J, HU Z, WEI J X, et al. A Ratiometric Fluorescent Probe Based onPCN-224 for Rapid and Ultrasensitive Detection of Copper Ions [J].Composites Communications, 2022, 33(101221): 1-6.
[180] XIE S Q, LIU Q, ZHU F W, et al. AIE-Active Metal-Organic Frameworks:Facile Preparation, Tunable Light Emission, Ultrasensitive Sensing ofCopper(ii) and Visual Fluorescence Detection of Glucose [J]. Journal ofMaterials Chemistry C, 2020, 8(30): 10408-15.
[181] WANG F X, GU Z Y, LEI W, et al. Graphene Quantum Dots as a FluorescentSensing Platform for Highly Efficient Detection of Copper(II) Ions [J].Sensors and Actuators B-Chemical, 2014, 190: 516-22.
[182] WANG Y H, ZHANG C, CHEN X C, et al. Ratiometric Fluorescent PaperSensor Utilizing Hybrid Carbon Dots-Quantum Dots for the VisualDetermination of Copper Ions [J]. Nanoscale, 2016, 8(11): 5977-84.
[183] YAN F Y, BAI Z J, LIU F, et al. Ratiometric Fluorescence Probes Based onCarbon Dots [J]. Current Organic Chemistry, 2018, 22(1): 57-66.
[184] RAO H B, LIU W, LU Z W, et al. Silica-Coated Carbon Dots Conjugated toCdTe Quantum Dots: A Ratiometric Fluorescent Probe for Copper(II) [J].Microchimica Acta, 2016, 183(2): 581-8.
[185] YAN F Y, BAI Z J, CHEN Y, et al. Ratiometric Fluorescent Detection ofCopper Ions Using Coumarin-Functionalized Carbon Dots Based on FRET [J].Sensors and Actuators B-Chemical, 2018, 275: 86-94.
[186] CHEN J, LI Y, LV K, et al. Cyclam-Functionalized Carbon Dots Sensor forSensitive and Selective Detection of Copper(II) Ion and Sulfide Anion inAqueous Media and its Imaging in Live Cells [J]. Sensors and Actuators BChemical,2016, 224: 298-306.
[187] YAN Z F, FANG L, HE Z G, et al. Surfactant-Modulated a Highly SensitiveFluorescent Probe of Fully Conjugated Covalent Organic Nanosheets forDetecting Copper Ions in Aqueous Solution [J]. Small, 2022, 18(21): 1-11.
修改评论