中文版 | English
题名

基于聚合物纳米颗粒的光学离子传感器的构建及其性能研究

其他题名
CONSTRUCTION AND PERFORMANCE OF OPTICAL ION SENSORS BASED ON POLYMERIC NANOPARTICLES
姓名
姓名拼音
CHEN Qinghan
学号
11949003
学位类型
博士
学位专业
085274 能源与环保
学科门类/专业学位类别
0852 工程博士
导师
谢小江
导师单位
化学系
论文答辩日期
2023-05-24
论文提交日期
2023-09-24
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

各类离子的定性与定量分析在生物化学、临床诊断、环境科学、法医学物证检验和工业生产等领域均具有重要意义。在众多的离子检测工具中,基于聚合物纳米颗粒的光学离子传感器因其在微小空间(如细胞内)能够实现无创检测而备受关注。该传感器具有灵敏度高、响应速度快、生物相容性好、化学稳定性高以及可兼容生物成像等特点。尽管如此,相关分析方法的开发仍面临许多技术挑战。例如,许多传感器的测试结果可信度较差,这是由于其线性响应范围无法覆盖目标离子的宽分布浓度,或是其选择性无法应对成分复杂且动态变化的实际样品所造成的。本论文针对不同目标离子的分析方法的局限性,开发了新型传感策略、设计与合成了一种可兼容于聚合物纳米颗粒的高选择性新型离子探针并且构建了一系列基于聚合物纳米颗粒的光学离子传感器,详细研究了它们的性能与传感机理,并对其应用进行了探索与拓展。主要研究内容和结果如下:

通过在聚合物纳米颗粒中仅负载单一组分亲脂性pH指示剂(生色离子载体III,CH3)制备了荧光自比率型纳米传感器,其线性响应区间(pH 3.0–7.0)可完全覆盖细胞内吞途径中核内体-溶酶体的氢离子浓度范围。该传感器具有独特的pH响应特性,在纳米尺度的有机相-液相界面上,光谱重叠与染料堆积引起了颗粒内部多种Förster共振能量转移过程(FRET)。这种能量转移不仅发生在CH3质子化和去质子化状态之间(hetero-FRET),还发生在其自身之间(homo-FRET)。界面响应机制模拟的pH响应表明了响应的动态范围依赖于纳米颗粒的尺寸(半径,r)与染料的分布情况(分配系数,Kp)。因此,通过调整传感器的尺寸与局部染料浓度即可产生一系列不同的动态传感范围(仅基于单一指示剂表观pKa在4.4–9.6可调)。作为概念验证,该纳米传感器被成功递送于HeLa细胞用于核内体-溶酶体中的亚细胞pH监测,确定了溶酶体的平均pH约为4.7,并成功可视化了溶酶体膜通透性(LMP)与液泡型H+-ATP酶抑制引起的pH中性化过程。

提出了一种在平衡模式下快速(10 s以内)检测聚离子鱼精蛋白与肝素的光学检测方法,通过将带电生色离子载体与离子交换剂负载于乳化聚合物纳米颗粒中,进一步将pH指示剂(生色离子载体)开发成可在界面上检测聚离子的工具。该方法具有高灵敏度、可调的线性传感范围(0–4.0 mg/L,i.e.,0.68 unit/mL,检测限为0.1 mg/L)且响应平衡时间较传统基于膜型或纸基型的方法(10 h以上)显著缩短。作为概念验证,肝素纳米传感器在十倍稀释的血清中高灵敏度比色检测的线性响应范围(1.0–13.0 mg/L,i.e.,0.17–2.21 unit/mL)可完全覆盖肝素的临床相关浓度(10–100 mg/L)。这些改进的特性主要归功于该传感器的小尺寸效应以及在纳米尺度液-液界面上的可逆识别机制。

设计了一种可兼容于聚合物纳米颗粒的新型Cu2+探针(HTI-Q),该探针具有高选择性、高灵敏度且检测限(LOD)约为0.02 μM。HTI-Q以半硫靛蓝和8-羟基喹啉为骨架,其设计受可见光响应的光开关启发。HTI-Q的中心碳-碳双键在Z和E构型之间可在470 nm光照下进行光致异构,但是当与Cu2+以2:1的结合比络合时易旋转的中心碳-碳双键会被锁定在E构型,并伴随吸收光谱102 nm的大红移与比率型荧光变化,其等吸收点为481 nm。此外,其在470 nm光照下的吸光度变化也受Cu2+浓度影响。HTI-Q可兼容于多种传感模式,包括混合溶剂、含离子交换剂的两相传感体系以及含参比染料的荧光纳米传感器。作为概念验证,基于HTI-Q的传感器被成功应用于实际水样中Cu2+监测并具有良好的回收率(97–102 %);负载HTI-Q的荧光纳米传感器实现了在外部刺激下RAW264.7细胞核内体-溶酶体中Cu2+浓度变化的可视化。

其他摘要

The qualitative and quantitative analysis of various ions is in high demand and of great importance in biochemistry, clinical diagnostics, environmental science, forensic evidence testing and industrial production. Among the tools for ion detection, optical ion sensors based on polymeric nanoparticles, which can be used for non-invasive detection in tiny spaces such as cells, have attracted much attention for their high sensitivity, fast response time, biocompatibility and chemical stability, as well as compatibility with bioimaging, but the development of relevant analytical methods still faces many technical challenges. For example, the linear response range of many sensors cannot cover a wide distribution of target ion concentrations or their selectivity cannot cope with the complex and dynamic composition of real samples, making the reliability of the results questionable. In this thesis, novel sensing strategies are developed to address the limitations of different target ion analysis methods, a new highly selective ion probe compatible with polymer nanoparticles is designed and synthesised, and a series of optical ion sensors based on polymeric nanoparticles are constructed, their performance and sensing mechanisms are investigated in detail, and their applications are explored and extended. The main research contents and results are summarized as follows:

Nanosensors with a linear response range (pH 3.0–7.0) covering the full range of hydrogen ion concentrations in the endolysosomal pathway were prepared by encapsulating polymeric nanoparticles with only a single component of a lipophilic pH indicator (chromoionophore III, CH3). The sensor has unique pH response at the aqueous-organic interface, where spectral overlap and dye accumulation caused multiple Förster resonance energy transfer processes (FRET) within the nanoparticle that occur not only between the protonated and deprotonated CH3 (hetero-FRET), but also between themselves (homo-FRET). The pH response was simulated according to an interfacial response mechanism and the dynamic range was found to depend on the

size of the nanoparticles and dye distribution(Kp). Therefore, adjusting the size of the nanoparticles and the local dye concentration gave rise to a series of dynamic sensing ranges with apparent pKa values from 4.4 to 9.6 based on a single indicator. As a proof of concept, the nanosensors were successfully delivered to HeLa cells to monitor subcellular pH values in the endosomes and lysosomes. Based on cellular calibrations, the average pH in the organelles were determined to be ca. 4.7. Moreover, the pH neutralization process during lysosome membrane permeabilization (LMP) and vesicular H+-ATPase inhibition was also successfully visualized with the nanosensors.

An optical detection method based on emulsified polymer nanospheres encapsulated with charged chromoionophores and ion exchangers is proposed for the rapid (within 10 s) equilibrated detection of protamine and heparin, further developing the pH indicator (chromoionophores) as a tool for detecting polyions at the aqueous-organic interface. The method has a tunable linear sensing range (0–4.0 mg/L, i.e., 0.68 unit/mL, limit of detection 0.1 mg/L), high sensitivity and significantly shorter response times than previous membrane-based or paper-based methods (10 h+). As a proof of concept, the linear response range of the heparin nanosensors for highly sensitive colorimetric detection in serum (1.0–13.0 mg/L, i.e., 0.17–2.21 unit/mL) takes into account that ten-fold dilutions can fully cover clinically relevant concentrations of heparin (10–100 mg/L). The improved characteristics are attributable to the small size of the nanospheres as well as the reversible recognition at the nanoscale liquid−liquid interface.

A new Cu2+ probe (HTI-Q) with a hemithioindigo and 8-hydroxyquinoline backbone compatible with polymeric nanoparticles was designed with excellent selectivity, high sensitivity, and a limit of detection (LOD) of ca. 0.02 μM. The design of the probe was inspired by a family of visible light responsive photoswitchable compounds. While the central carbon-carbon double bond of HTI-Q is photoisomerizable between the Z and E configurations at 470 nm light, it is locked upon binding with Cu2+ in a 2:1 stoichiometry into the E configuration, resulting in a large bathochromic shift (102 nm) and ratiometric fluorescence changes with an isosbestic point at 481 nm. The absorbance change of HTI-Q upon 470 nm light illumination also depended on the concentration of Cu2+. Different sensing modes were demonstrated including in mixed solvents, a two-phase sensing system containing cation exchanger, and fluorescent nanoprobes containing a reference dye. As a proof of concept, HTI-Q-based sensors were successfully applied to determine Cu2+ in real water samples with excellent recovery (97–102 %). Further, fluorescent nanoprobes incorporating HTI-Q were successfully applied to image endolysosomal Cu2+ changes upon external stimulation.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2019
学位授予年份
2023-09
参考文献列表

[1] ZHANG J T, YANG M, LI C, et al. Near-Infrared Fluorescent Probes Basedon Piperazine-Functionalized BODIPY Dyes for Sensitive Detection ofLysosomal pH [J]. Journal of Materials Chemistry B, 2015, 3(10): 2173-84.
[2] YANG M Y, SONG Y Q, ZHANG M, et al. Converting a SolvatochromicFluorophore into a Protein-Based pH Indicator for Extreme Acidity [J].Angewandte Chemie-International Edition, 2012, 51(31): 7674-9.
[3] SCHAFERLING M. Nanoparticle-Based Luminescent Probes for IntracellularSensing and Imaging of pH [J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2016, 8(3): 378-413.
[4] CHIN M Y, PATWARDHAN A R, ANG K H, et al. Genetically Encoded, pHSensitivemTFP1 Biosensor for Probing Lysosomal pH [J]. ACS Sensors, 2021,6(6): 2168-80.
[5] DING J W, CHEN Y, WANG X W, et al. Label-Free and Substrate-FreePotentiometric Aptasensing Using Polycation-Sensitive Membrane Electrodes[J]. Analytical Chemistry, 2012, 84(4): 2055-61.
[6] WANG X W, DING J W, SONG W J, et al. Primary-Ion-ConditionedPolymeric Membrane Electrodes for Sensitive Detection of Polyions [J].Sensors and Actuators B-Chemical, 2012, 161(1): 1119-23.
[7] WANG X W, MAHONEY M, MEYERHOFF M E. Inkjet-Printed Paper-BasedColorimetric Polyion Sensor Using a Smartphone as a Detector [J]. AnalyticalChemistry, 2017, 89(22): 12334-41.
[8] ELSABAHY M, WOOLEY K L. Design of Polymeric Nanoparticles forBiomedical Delivery Applications [J]. Chemical Society Reviews, 2012, 41(7):2545-61.
[9] BALACONIS M K, CLARK H A. Biodegradable Optode-Based Nanosensorsfor in Vivo Monitoring [J]. Analytical Chemistry, 2012, 84(13): 5787-93.
[10] VALCOURT D M, DANG M N, SCULLY M A, et al. Nanoparticle-MediatedCo-Delivery of Notch-1 Antibodies and ABT-737 as a Potent TreatmentStrategy for Triple-Negative Breast Cancer [J]. ACS Nano, 2020, 14(3): 3378-88.
[11] 王毅夫. 基于软物质材料的纳米离子光学传感器 [D]. 哈尔滨:哈尔滨工业大学, 2020(2): 1-69.
[12] 李潇昂. 阴离子对基于载体的钾离子纳米传感器的影响 [D]. 哈尔滨:哈尔滨工业大学, 2019(2): 1-57.
[13] 翟晶莹. 新型荧光探针在光学传感器和生物分析中的应用 [D]. 南京:南京大学, 2013(3): 1-72.
[14] 刘玥伶. 基于新型功能化材料的电化学和光学传感器的研究 [D]. 南京:南京大学, 2015(3): 1-130.
[15] 肖宁. 有机荧光传感器/纳米复合传感材料的设计、合成及其性能研究[D]. 长春:吉林大学, 2014(3): 1-136.
[16] ROSI N L, MIRKIN C A. Nanostructures in Biodiagnostics [J]. ChemicalReviews, 2005, 105(4): 1547-62.
[17] KRAMER J, KANG R, GRIMM L M, et al. Molecular Probes, Chemosensors,and Nanosensors for Optical Detection of Biorelevant Molecules and Ions inAqueous Media and Biofluids [J]. Chemical Reviews, 2022, 122(3): 3459-636.
[18] RIDEAU E, DIMOVA R, SCHWILLE P, et al. Liposomes and Polymersomes:a Comparative Review Towards Cell Mimicking [J]. Chemical SocietyReviews, 2018, 47(23): 8572-610.
[19] LIU X Y, LI C, LV J, et al. Glucose and H2O2 Dual-Responsive PolymericMicelles for the Self-Regulated Release of Insulin [J]. ACS Applied BioMaterials, 2020, 3(3): 1598-606.
[20] MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al. EngineeringPrecision Nanoparticles for Drug Delivery [J]. Nature Reviews DrugDiscovery, 2021, 20(2): 101-24.
[21] CLARK H A, HOYER M, PHILBERT M A, et al. Optical Nanosensors forChemical Analysis Inside Single Living Cells. 1. Fabrication, Characterization,and Methods for Intracellular Delivery of PEBBLE Sensors [J]. AnalyticalChemistry, 1999, 71(21): 4831-6.
[22] BUCK S M, XU H, BRASUEL M, et al. Nanoscale Probes Encapsulated byBiologically Localized Embedding (PEBBLEs) for Ion Sensing and Imagingin Live Cells [J]. Talanta, 2004, 63(1): 41-59.
[23] LEE Y E K, KOPELMAN R. Nanoparticle PEBBLE Sensors in Live Cells[M]//Imaging and Spectroscopic Analysis of Living Cells: Optical andSpectroscopic Techniques. 2012, 504: 419-70.
[24] BORISOV S M, MAYR T, KLIMANT I. Poly(styrene-block-vinylpyrrolidone)Beads as a Versatile Material for Simple Fabrication o f Optical Nanosensors[J]. Analytical Chemistry, 2008, 80(3): 573-82.
[25] BORISOV S M, HERROD D L, KLIMANT I. Fluorescent Poly(styreneblock-vinylpyrrolidone) Nanobeads for Optical Sensing of pH [J]. Sensors andActuators B-Chemical, 2009, 139(1): 52-8.
[26] QIN Y, MI Y M, BAKKER E. Determination of Complex Formation Constantsof 18 Neutral Alkali and Alkaline Earth Metal Ionophores in Poly(vinylchloride) Sensing Membranes Plasticized with Bis(2-ethylhexyl)sebacate andO-nitrophenyloctylether [J]. Analytica Chimica Acta, 2000, 421(2): 207-20.
[27] XIE X J, BAKKER E. Determination of Effective Stability Constants of Ion-Carrier Complexes in Ion Selective Nanospheres with ChargedSolvatochromic Dyes [J]. Analytical Chemistry, 2015, 87(22): 11587-91.
[28] DU X F, WANG R J, ZHAI J Y, et al. Ionophore-Based Ion-SelectiveNanosensors from Brush Block Copolymer Nanodots [J]. ACS Applied NanoMaterials, 2020, 3(1): 782-8.
[29] TRIBUSER L, BORISOV S M, KLIMANT I. Tuning the Sensitivity ofFluoroionophore-Based K+ Sensors via Variation of Polymer Matrix: AComparative Study [J]. Sensors and Actuators B-Chemical, 2020,312(127940): 1-6.
[30] KHALIN I, HEIMBURGER D, MELNYCHUK N, et al. UltrabrightFluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for LiveTracking in the Mouse Brain [J]. ACS Nano, 2020, 14(8): 9755-70.
[31] COLLOT M, SCHILD J, FAM K T, et al. Stealth and Bright MonomolecularFluorescent Organic Nanoparticles Based on Folded Amphiphilic Polymer [J].ACS Nano, 2020, 14(10): 13924-37.
[32] LAVIS L D, RAINES R T. Bright Ideas for Chemical Biology [J]. ACSChemical Biology, 2008, 3(3): 142-55.
[33] MADSEN J, CANTON I, WARREN N J, et al. Nile Blue-Based Nanosized pHSensors for Simultaneous Far-Red and Near-Infrared Live Bioimaging [J].Journal of the American Chemical Society, 2013, 135(39): 14863-70.
[34] 都新丰,翟晶莹,谢小江. 基于离子载体的电化学和光学传感系统[C]//中国化学会第十二届全国微全分析系统学术会议、第七届全国微纳尺度生物分离分析学术会议、第七届国际微流控学学术论坛、The 11th InternationalSymposium on Microchemistry and Microsystems 摘要集. 西安, 中国化学会, 2019: 1-58.
[35] TANG L, YANG X J, YIN Q, et al. Investigating the Optimal Size ofAnticancer Nanomedicine [J]. Proceedings of the National Academy ofSciences of the United States of America, 2014, 111(43): 15344-9.
[36] KENRY, YEO T, MANGHNANI P N, et al. Mechanistic Understanding of theBiological Responses to Polymeric Nanoparticles [J]. ACS Nano, 2020, 14(4):4509-22.
[37] FIELD L D, DELEHANTY J B, CHEN Y C, et al. Peptides for SpecificallyTargeting Nanoparticles to Cellular Organelles: Quo Vadis? [J]. Accounts ofChemical Research, 2015, 48(5): 1380-90.
[38] BEHZADI S, SERPOOSHAN V, TAO W, et al. Cellular Uptake ofNanoparticles: Journey Inside the Cell [J]. Chemical Society Reviews, 2017,46(14): 4218-44.
[39] OH N, PARK J H. Endocytosis and Exocytosis of Nanoparticles inMammalian Cells [J]. International Journal of Nanomedicine, 2014,9(Supplement 1): 51-63.
[40] YAMEEN B, CHOI W I, VILOS C, et al. Insight into Nanoparticle CellularUptake and Intracellular Targeting [J]. Journal of Controlled Release, 2014,190: 485-99.
[41] TSAI Y T, ZHOU J, WENG H, et al. Real-Time Noninvasive Monitoring of InVivo Inflammatory Responses using a pH Ratiometric Fluorescence ImagingProbe [J]. Advanced Healthcare Materials, 2014, 3(2): 221-9.
[42] IVERSEN T G, SKOTLAND T, SANDVIG K. Endocytosis and IntracellularTransport of Nanoparticles: Present Knowledge and Need for Future Studies[J]. Nano Today, 2011, 6(2): 176-85.
[43] DOHERTY G J, MCMAHON H T. Mechanisms of Endocytosis [J]. AnnualReview of Biochemistry, 2009, 78: 857-902.
[44] YOUNG K D. The Selective Value of Bacterial Shape [J]. Microbiology andMolecular Biology Reviews, 2006, 70(3): 660-703.
[45] SMITH C J, GRIGORIEFF N, PEARSE B M F. Clathrin Coats at 21 AngstromResolution: A Cellular Assembly Designed to Recycle Multiple MembraneReceptors [J]. EMBO Journal, 1998, 17(17): 4943-53.
[46] FORD M G J, MILLS I G, PETER B J, et al. Curvature of Clathrin-CoatedPits Driven by Epsin [J]. Nature, 2002, 419(6905): 361-6.
[47] EHRLICH M, BOLL W, VAN OIJEN A, et al. Endocytosis by RandomInitiation and Stabilization of Clathrin-Coated Pits [J]. Cell, 2004, 118(5):591-605.
[48] ANDERSON R G W. The Caveolae Membrane System [J]. Annual Review ofBiochemistry, 1998, 67: 199-225.
[49] GRUENBERG J, STENMARK H. The Biogenesis of MultivesicularEndosomes [J]. Nature Reviews Molecular Cell Biology, 2004, 5(4): 317-23.
[50] LUZIO J P, PRYOR P R, BRIGHT N A. Lysosomes: Fusion and Function [J].Nature Reviews Molecular Cell Biology, 2007, 8(8): 622-32.
[51] SAFTIG P, KLUMPERMAN J. Lysosome Biogenesis and LysosomalMembrane Proteins: Trafficking Meets Function [J]. Nature ReviewsMolecular Cell Biology, 2009, 10(9): 623-35.
[52] VIDA T, GERHARDT B. A Cell-Free Assay Allows Reconstitution ofVps33p-Dependent Transport to the Yeast Vacuole/Lysosome [J]. Journal ofCell Biology, 1999, 146(1): 85-97.
[53] PRYOR P R, MULLOCK B M, BRIGHT N A, et al. Combinatorial SNAREComplexes with VAMP7 or VAMP8 Define Different Late Endocytic FusionEvents [J]. EMBO Reports, 2004, 5(6): 590-5.
[54] SCOTT C C, GRUENBERG J. Ion Flux and the Function of Endosomes andLysosomes: pH is Just the Start [J]. Bioessays, 2011, 33(2): 103-10.
[55] YAMADA Y, HARASHIMA H. Enhancement in Selective MitochondrialAssociation by Direct Modification of a Mitochondrial Targeting SignalPeptide on a Liposomal Based Nanocarrier [J]. Mitochondrion, 2013, 13(5):526-32.
[56] KAWAMURA E, YAMADA Y, HARASHIMA H. Mitochondrial TargetingFunctional Peptides as Potential Devices for the Mitochondrial Delivery of aDF-MITO-Porter [J]. Mitochondrion, 2013, 13(6): 610-4.
[57] LIAN Y, LIN Z, ZHANG Z, et al. Active-Targeting Polymeric DualNanosensor for Ratiometrically Measuring Proton and Oxygen Concentrationsin Mitochondria [J]. Analytical Chemistry, 2021, 93(23): 8291-9.
[58] TORCHILIN V P. Recent Approaches to Intracellular Delivery of Drugs andDNA and Organelle Targeting [J]. Annual Review of Biomedical Engineering,2006, 8: 343-75.
[59] XU P S, VAN KIRK E A, ZHAN Y H, et al. Targeted Charge-ReversalNanoparticles for Nuclear Drug Delivery [J]. Angewandte Chemie-International Edition, 2007, 46(26): 4999-5002.
[60] DERFUS A M, CHAN W C W, BHATIA S N. Intracellular Delivery ofQuantum Dots for Live Cell Labeling and Organelle Tracking [J]. AdvancedMaterials, 2004, 16(12): 961-6.
[61] CHENG F Y, WANG S P H, SU C H, et al. Stabilizer-Free Poly(lactide-coglycolide)Nanoparticles for Multimodal Biomedical Probes [J]. Biomaterials,2008, 29(13): 2104-12.
[62] SUKUMARAN P, SCHAAR A, SUN Y Y, et al. Functional Role of TRPChannels in Modulating ER Stress and Autophagy [J]. Cell Calcium, 2016,60(2): 123-32.
[63] AKIMOTO J, NAKAYAMA M, SAKAI K, et al. Thermally ControlledIntracellular Uptake System of Polymeric Micelles Possessing Poly(Nisopropylacrylamide)-Based Outer Coronas [J]. Molecular Pharmaceutics,2010, 7(4): 926-35.
[64] WANG J, FANG X C, LIANG W. Pegylated Phospholipid Micelles InduceEndoplasmic Reticulum-Dependent Apoptosis of Cancer Cells but not NormalCells [J]. ACS Nano, 2012, 6(6): 5018-30.
[65] FLINCK M, KRAMER S H, PEDERSEN S F. Roles of pH in Control of CellProliferation [J]. Acta Physiologica, 2018, 223(3): 1-17.
[66] THOMAS J A, BUCHSBAUM R N, ZIMNIAK A, et al. Intracellular pHMeasurements in Ehrlich Ascites Tumor-Cells Utilizing Spectroscopic ProbesGenerated Institu [J]. Biochemistry, 1979, 18(11): 2210-8.
[67] FENG Z Z, MA Y Y, LI B J, et al. Mitochondria Targeted Self-AssembledRatiometric Fluorescent Nanoprobes for pH Imaging in Living Cells [J].Analytical Methods, 2019, 11(15): 2097-104.
[68] JOHNSON D E, OSTROWSKI P, JAUMOUILLE V, et al. The Position ofLysosomes within the Cell Determines Their Luminal pH [J]. Journal of CellBiology, 2016, 212(6): 677-92.
[69] ZHAO J C, STENZEL M H. Entry of Nanoparticles into Cells: The Importanceof Nanoparticle Properties [J]. Polymer Chemistry, 2018, 9(3): 259-72.
[70] HOWES P D, CHANDRAWATI R, STEVENS M M. Colloidal Nanoparticlesas Advanced Biological Sensors [J]. Science, 2014, 346(6205): 53-63.
[71] SIGAEVA A, ONG Y, DAMLE V G, et al. Optical Detection of IntracellularQuantities Using Nanoscale Technologies [J]. Accounts of Chemical Research,2019, 52(7): 1739-49.
[72] BENJAMINSEN R V, SUN H H, HENRIKSEN J R, et al. EvaluatingNanoparticle Sensor Design for Intracellular pH Measurements [J]. ACS Nano,2011, 5(7): 5864-73.
[73] SUN H H, ALMDAL K, ANDRESEN T L. Expanding the DynamicMeasurement Range for Polymeric Nanoparticle pH Sensors [J]. ChemicalCommunications, 2011, 47(18): 5268-70.
[74] SHI W, LI X H, MA H M. Fluorescent Probes and Nanoparticles forIntracellular Sensing of pH Values [J]. Methods and Applications inFluorescence, 2014, 2(4): 042001-14.
[75] CHIDAMBARAM M, KRISHNASAMY K. Modifications to theConventional Nanoprecipitation Technique: An Approach to Fabricate NarrowSized Polymeric Nanoparticles [J]. Advanced Pharmaceutical Bulletin, 2014,4(2): 205-8.
[76] XIE X, MISTLBERGER G, BAKKER E. Ultrasmall Fluorescent Ion-Exchanging Nanospheres Containing Selective Ionophores [J]. AnalyticalChemistry, 2013, 85(20): 9932-8.
[77] DENG L, ZHAI J Y, DU X F, et al. Ionophore-Based Ion-SelectiveNanospheres Based on Monomer-Dimer Conversion in the Near-InfraredRegion [J]. ACS Sensors, 2021, 6(3): 1279-85.
[78] GUO C, ZHAI J Y, WANG Y F, et al. Wash-Free Detection of Nucleic Acidswith Photoswitch-Mediated Fluorescence Resonance Energy Transfer againstOptical Background Interference [J]. Analytical Chemistry, 2021, 93(23):8128-33.
[79] SALIM M M, OWENS E A, GAO T L, et al. Hydroxylated Near-InfraredBODIPY Fluorophores as Intracellular pH Sensors [J]. Analyst, 2014, 139(19):4862-73.
[80] DALFEN I, DMITRIEV R I, HOLST G, et al. Background-Free Fluorescence-Decay-Time Sensing and Imaging of pH with Highly PhotostableDiazaoxotriangulenium Dyes [J]. Analytical Chemistry, 2019, 91(1): 808-16.
[81] CAO L X, LI X Y, WANG S Q, et al. A Novel Nanogel-Based FluorescentProbe for Ratiometric Detection of Intracellular pH Values [J]. ChemicalCommunications, 2014, 50(63): 8787-90.
[82] SHAMSIPUR M, BARATI A, NEMATIFAR Z. Fluorescent pH Nanosensors:Design Strategies and Applications [J]. Journal of Photochemistry andPhotobiology C-Photochemistry Reviews, 2019, 39: 76-141.
[83] FRANKAER C G, ROSENBERG M, SANTELLA M, et al. Tuning the pK(a)of a pH Responsive Fluorophore and the Consequences for Calibration ofOptical Sensors Based on a Single Fluorophore but Multiple Receptors [J].ACS Sensors, 2019, 4(3): 764-73.
[84] ROSENBERG M, JUNKER A K R, SORENSEN T J, et al. Fluorescence pHProbes Based on Photoinduced Electron Transfer Quenching of LongFluorescence Lifetime Triangulenium Dyes [J]. Chemphotochem, 2019, 3(5):233-42.
[85] XIE X J, BAKKER E. Ion Selective Optodes: From the Bulk to the Nanoscale[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-910.
[86] DU X F, XIE X J. Ion-Selective Optodes: Alternative Approaches forSimplified Fabrication and Signaling [J]. Sensors and Actuators B-Chemical,2021, 335(129368): 1-16.
[87] BAKKER E, BUHLMANN P, PRETSCH E. Carrier-Based Ion-SelectiveElectrodes and Bulk Optodes. 1. General Characteristics [J]. ChemicalReviews, 1997, 97(8): 3083-132.
[88] ZHONG Z L, ANSLYN E V. A Colorimetric Sensing Ensemble for Heparin[J]. Journal of the American Chemical Society, 2002, 124(31): 9014-5.
[89] BROMFIELD S M, WILDE E, SMITH D K. Heparin Sensing and Binding -Taking Supramolecular Chemistry Towards Clinical Applications [J].Chemical Society Reviews, 2013, 42(23): 9184-95.
[90] FERGUSON S A, MEYERHOFF M E. Advances in Electrochemical andOptical Polyion Sensing: A Review [J]. Sensors and Actuators B-Chemical,2018, 272: 643-54.
[91] CRESPO G A, AFSHAR M G, BAKKER E. Reversible Sensing of theAnticoagulant Heparin with Protamine Permselective Membranes [J].Angewandte Chemie-International Edition, 2012, 51(50): 12575-8.
[92] FU B, BAKKER E, YUN J H, et al. Response Mechanism of PolymerMembrane-Based Potentiometric Polyion Sensors [J]. Analytical Chemistry,1994, 66(14): 2250-9.
[93] MA S C, YANG V C, MEYERHOFF M E. Heparin-ResponsiveElectrochemical Sensor - A Preliminary Study [J]. Analytical Chemistry, 1992,64(6): 694-7.
[94] RAMAMURTHY N, BALIGA N, WAHR J A, et al. Improved Protamine-Sensitive Membrane Electrode for Monitoring Heparin Concentrations inWhole Blood via Protamine Titration [J]. Clinical Chemistry, 1998, 44(3):606-13.
[95] SHVAREV A, BAKKER E. Reversible Electrochemical Detection ofNonelectroactive Polyions [J]. Journal of the American Chemical Society,2003, 125(37): 11192-3.
[96] FERGUSON S A, MEYERHOFF M E. Manual and Flow-InjectionDetection/Quantification of Polyquaterniums via Fully Reversible Polyion-Sensitive Polymeric Membrane-Based Ion-Selective Electrodes [J]. ACSSensors, 2017, 2(10): 1505-11.
[97] WANG E J, MEYERHOFF M E, YANG V C. Optical-Detection ofMacromolecular Heparin via Selective Coextraction into Thin PolymericFilms [J]. Analytical Chemistry, 1995, 67(3): 522-7.
[98] DURUST N, MEYERHOFF M E, UNAL N, et al. SpectrophotometricDetermination of Various Polyanions with Polymeric Film Optodes UsingMicrotiter Plate Reader [J]. Analytica Chimica Acta, 2011, 699(1): 107-12.
[99] DAI S, YE Q S, WANG E J, et al. Optical Detection of Polycations viaPolymer Film-Modified Microtiter Plates: Response Mechanism andBioanalytical Applications [J]. Analytical Chemistry, 2000, 72(14): 3142-9.
[100] DU X F, YANG L Y, HU W C, et al. A Plasticizer-Free Miniaturized OpticalIon Sensing Platform with Ionophores and Silicon-Based Particles [J].Analytical Chemistry, 2018, 90(9): 5818-24.
[101] WANG R J, DU X F, WU Y T, et al. Graphene Quantum Dots Integrated inlonophore-Based Fluorescent Nanosensors for Na+ and K+ [J]. ACS Sensors,2018, 3(11): 2408-14.
[102] DU X F, XIE X J. Non-Equilibrium Diffusion Controlled Ion-Selective OpticalSensor for Blood Potassium Determination [J]. ACS Sensors, 2017, 2(10):1410-4.
[103] KLUCINSKA K, STELMACH E, KISIEL A, et al. Nanoparticles ofFluorescent Conjugated Polymers: Novel Ion-Selective Optodes [J].Analytical Chemistry, 2016, 88(11): 5644-8.
[104] RUCKH T T, SKIPWITH C G, CHANG W D, et al. Ion-Switchable QuantumDot Forster Resonance Energy Transfer Rates in Ratiometric PotassiumSensors [J]. ACS Nano, 2016, 10(4): 4020-30.
[105] LEE C H, FOLZ J, ZHANG W L, et al. Ion-Selective Nanosensor forPhotoacoustic and Fluorescence Imaging of Potassium [J]. AnalyticalChemistry, 2017, 89(15): 7943-9.
[106] XIE X J, ZHAI J Y, CRESPO G A, et al. Ionophore-Based Ion-SelectiveOptical NanoSensors Operating in Exhaustive Sensing Mode [J]. AnalyticalChemistry, 2014, 86(17): 8770-5.
[107] SODA Y, ROBINSON K J, NUSSBAUM R, et al. Protamine/Heparin OpticalNanosensors Based on Solvatochromism [J]. Chemical Science, 2021, 12(47):15596-602.
[108] BOURASSA M W, MILLER L M. Metal Imaging in NeurodegenerativeDiseases [J]. Metallomics, 2012, 4(8): 721-38.
[109] FREDERICKSON C J, KOH J Y, BUSH A I. The Neurobiology of Zinc inHealth and Disease [J]. Nature Reviews Neuroscience, 2005, 6(6): 449-62.
[110] BOLOGNIN S, MESSORI L, ZATTA P. Metal Ion Physiopathology inNeurodegenerative Disorders [J]. Neuromolecular Medicine, 2009, 11(4):223-38.
[111] WILLIAMS D R. Metals, Ligands, and Cancer [J]. Chemical Reviews, 1972,72(3): 203-213.
[112] BARNHAM K J, BUSH A I. Metals in Alzheimer's and Parkinson's diseases[J]. Current Opinion in Chemical Biology, 2008, 12(2): 222-8.
[113] GUPTE A, MUMPER R J. Elevated Copper and Oxidative: Stress in CancerCells as a Target for Cancer Treatment [J]. Cancer Treatment Reviews, 2009,35(1): 32-46.
[114] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death [J]. Cell, 2012, 149(5): 1060-72.
[115] TSVETKOV P, COY S, PETROVA B, et al. Copper Induces Cell Death byTargeting Lipoylated TCA Cycle Proteins [J]. Science, 2022, 375(6586):1254-1261.
[116] LI Z P, HOU J T, WANG S, et al. Recent Advances of Luminescent Sensorsfor Iron and Copper: Platforms, Mechanisms, and Bio-Applications [J].Coordination Chemistry Reviews, 2022, 469(214695): 1-37.
[117] WU J S, KWON B, LIU W M, et al. Chromogenic/Fluorogenic EnsembleChemosensing Systems [J]. Chemical Reviews, 2015, 115(15): 7893-943.
[118] ZHAN L M, TIAN Y. Designing Recognition Molecules and TailoringFunctional Surfaces for In Vivo Monitoring of Small Molecules in the Brain[J]. Accounts of Chemical Research, 2018, 51(3): 688-96.
[119] WANG P, FU J X, YAO K, et al. A Novel Quinoline-Derived Fluorescent"Turn-on" Probe for Cu2+ with Highly Selectivity and Sensitivity and ItsApplication in Cell Imaging [J]. Sensors and Actuators B-Chemical, 2018,273(1070): 1-6.
[120] VETRIK M, MATTOVA J, MACKOVA H, et al. Biopolymer Strategy for theTreatment of Wilson's Disease [J]. Journal of Controlled Release, 2018, 273:131-8.
[121] YOU J, LEE S, TARK H J, et al. Optical Detection of Copper Ions viaStructural Dissociation of Plasmonic Sugar Nanoprobes [J]. AnalyticalChemistry, 2022, 94(14): 5521-9.
[122] LEE S, BARIN G, ACKERMAN C M, et al. Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease[J]. Journal of the American Chemical Society, 2016, 138(24): 7603-9.
[123] LEE S, CHUNG C Y S, LIU P, et al. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools ofLabile Brain Copper [J]. Journal of the American Chemical Society, 2020,142(35): 14993-5003.
[124] ZHU A W, QU Q, SHAO X L, et al. Carbon-Dot-Based Dual-EmissionNanohybrid Produces a Ratiometric Fluorescent Sensor for In Vivo Imagingof Cellular Copper Ions [J]. Angewandte Chemie-International Edition, 2012,51(29): 7185-9.
[125] LIU J Q, LIU Z C, WANG W K, et al. Real-Time Tracking and Sensing of Cu+and Cu2+ with a Single SERS Probe in the Live Brain: Toward UnderstandingWhy Copper Ions Were Increased upon Ischemia [J]. Angewandte Chemie-International Edition, 2021, 60(39): 21351-9.
[126] ZHANG L M, HAN Y Y, ZHAO F, et al. A Selective and Accurate RatiometricElectrochemical Biosensor for Monitoring of Cu2+ Ions in a Rat Brain [J].Analytical Chemistry, 2015, 87(5): 2931-6.
[127] LUO Y P, ZHANG L M, LIU W, et al. A Single Biosensor for Evaluating theLevels of Copper Ion and L-Cysteine in a Live Rat Brain with Alzheimer'sDisease [J]. Angewandte Chemie-International Edition, 2015, 54(47): 14053-6.
[128] SUMNER J P, WESTERBERG N M, STODDARD A K, et al. Cu+- and Cu2+-Sensitive PEBBLE Fluorescent Nanosensors Using DsRed as the RecognitionElement [J]. Sensors and Actuators B-Chemical, 2006, 113(2): 760-7.
[129] ZIELINSKA A, CARREIRO F, OLIVEIRA A M, et al. PolymericNanoparticles: Production, Characterization, Toxicology and Ecotoxicology[J]. Molecules, 2020, 25(16): 3731-20.
[130] CASEY J R, GRINSTEIN S, ORLOWSKI J. Sensors and Regulators ofIntracellular pH [J]. Nature Reviews Molecular Cell Biology, 2010, 11(1): 50-61.
[131] WHITTEN S T, GARCIA-MORENO B, HILSER V J. Local ConformationalFluctuations can Modulate the Coupling Between Proton Binding and GlobalStructural Transitions in Proteins [J]. Proceedings of the National Academy ofSciences of the United States of America, 2005, 102(12): 4282-7.
[132] THANGARAJU M, SHARMA K, LIU D N, et al. Interdependent Regulationof Intracellular Acidification and SHP-1 in Apoptosis [J]. Cancer Research,1999, 59(7): 1649-54.
[133] ANDRESEN T L, JENSEN S S, JORGENSEN K. Advanced Strategies inLiposomal Cancer Therapy: Problems and Prospects of Active and TumorSpecific Drug Release [J]. Progress in Lipid Research, 2005, 44(1): 68-97.
[134] JOLCK R I, FELDBORG L N, ANDERSEN S, et al. Engineering Liposomesand Nanoparticles for Biological Targeting [M]//NYANHONGO G S,STEINER W, GUBITZ G M. Biofunctionalization of Polymers and TheirApplications. 2011: 251-80.
[135] LI J, ZHAI J Y, WANG Y F, et al. Dual Functional Luminescent Nanoprobesfor Monitoring Oxygen and Chloride Concentration Changes in Cells [J].Chemical Communications, 2020, 56(95): 14980-14983.
[136] BOYA P, KROEMER G. Lysosomal Membrane Permeabilization in Cell Death[J]. Oncogene, 2008, 27(50): 6434-51.
[137] JOHANSSON A C, APPELQVIST H, NILSSON C, et al. Regulation ofApoptosis-Associated Lysosomal Membrane Permeabilization [J]. Apoptosis,2010, 15(5): 527-40.
[138] FORGAC M. Vacuolar ATPases: Rotary Proton Pumps in Physiology andPathophysiology [J]. Nature Reviews Molecular Cell Biology, 2007, 8(11):917-29.
[139] YOSHIMORI T, YAMAMOTO A, MORIYAMA Y, et al. Bafilomycin-A1, ASpecific Inhibitor of Vacuolar-Type H+-Atpase, Inhibitis Acidification andProtein-Degradation in Lysosomes of Cultured-Cells [J]. Journal of BiologicalChemistry, 1991, 266(26): 17707-12.
[140] ORTE A, ALVAREZ-PEZ J M, RUEDAS-RAMA M J. Fluorescence LifetimeImaging Microscopy for the Detection of Intracellular pH with Quantum DotNanosensors [J]. ACS Nano, 2013, 7(7): 6387-95.
[141] BALUT C, VANDEVEN M, DESPA S, et al. Measurement of Cytosolic andMitochondrial pH in Living Cells During Reversible Metabolic Inhibition [J].Kidney International, 2008, 73(2): 226-32.
[142] CHAN K W Y, LIU G S, SONG X L, et al. MRI-Detectable pH NanosensorsIncorporated into Hydrogels for in Vivo Sensing of Transplanted-CellViability [J]. Nature Materials, 2013, 12(3): 268-75.
[143] WANG X D, STOLWIJK J A, LANG T, et al. Ultra-Small, Highly Stable, andSensitive Dual Nanosensors for Imaging Intracellular Oxygen and pH inCytosol [J]. Journal of the American Chemical Society, 2012, 134(41): 17011-4.
[144] QIN F Y, ZHANG Y R, ZHU J M, et al. A Mitochondrial-Targeted FluorescentProbe to Sense pH and HOCl in Living Cells [J]. Sensors and Actuators BChemical,2019, 291: 207-15.
[145] MIAO X Y, ZHU Z Q, JIA H S, et al. Colorimetric Detection of CancerBiomarker Based on Enzyme Enrichment and pH Sensing [J]. Sensors andActuators B-Chemical, 2020, 320(128435): 1-8.
[146] BELL-VLASOY A K, ZAJDA J, ELDOURGHAMY A, et al. PolyionSelective Polymeric Membrane-Based Pulstrode as a Detector in Flow-Injection Analysis [J]. Analytical Chemistry, 2014, 86(8): 4041-6.
[147] YE Q S, MEYERHOFF M E. Rotating electrode potentiometry: Lowering theDetection Limits of Nonequilibrium Polyion-Sensitive Membrane Electrodes[J]. Analytical Chemistry, 2001, 73(2): 332-6.
[148] AMEMIYA S, YANG X T, WAZENEGGER T L. Voltammetry of the PhaseTransfer of Polypeptide Protamines Across Polarized Liquid/Liquid Interfaces[J]. Journal of the American Chemical Society, 2003, 125(39): 11832-3.
[149] YUAN Y, AMEMIYA S. Facilitated Protamine Transfer at PolarizedWater/1,2-dichloroethane Interfaces Studied by Cyclic Voltammetry andChronoamperometry at Micropipet Electrodes [J]. Analytical Chemistry, 2004,76(23): 6877-86.
[150] GARADA M B, KABAGAMBE B, AMEMIYA S. Extraction or Adsorption?Voltammetric Assessment of Protamine Transfer at Ionophore-BasedPolymeric Membranes [J]. Analytical Chemistry, 2015, 87(10): 5348-55.
[151] BUHLMANN P, PRETSCH E, BAKKER E. Carrier-Based Ion-SelectiveElectrodes and Bulk Optodes. 2. Ionophores for Potentiometric and OpticalSensors [J]. Chemical Reviews, 1998, 98(4): 1593-687.
[152] DU X F, ZHU C Y, XIE X J. Thermochromic Ion-Exchange MicellesContaining H+ Chromoionophores [J]. Langmuir, 2017, 33(23): 5910-4.
[153] ZHAI J Y, XIE X J, BAKKER E. Ion-Selective Optode Nanospheres asHeterogeneous Indicator Reagents in Complexometric Titrations [J].Analytical Chemistry, 2015, 87(5): 2827-31.
[154] XIE X J, BAKKER E. Light-Controlled Reversible Release and Uptake ofPotassium Ions from Ion-Exchanging Nanospheres [J]. ACS Applied Materials& Interfaces, 2014, 6(4): 2666-70.
[155] XIE X, ZHAI J, BAKKER E. pH Independent Nano-Optode Sensors Based onExhaustive Ion-Selective Nanospheres [J]. Analytical Chemistry, 2014, 86(6):2853-6.
[156] LI Y, SUN H C, SHI F P, et al. Multi-Positively Charged DendrimericNanoparticles Induced Fluorescence Quenching of Graphene Quantum Dotsfor Heparin and Chondroitin Sulfate Detection [J]. Biosensors &Bioelectronics, 2015, 74: 284-90.
[157] ZENG Y, PEI J J, WANG L H, et al. A Sensitive Sequential 'On/Off SERSAssay for Heparin with Wider Detection Window and Higher ReliabilityBased on the Reversed Surface Charge Changes of Functionalized Au@AgNanoparticles [J]. Biosensors & Bioelectronics, 2015, 66: 55-61.
[158] SINDUJA B, GOWTHAMAN N S K, JOHN S A. Selective and SensitiveDetermination of the Antidote of Heparin Using Ag-GQDs by OpticalMethods [J]. Analytical Methods, 2018, 10(17): 1999-2006.
[159] HU L Z, LIAO H, FENG L Y, et al. Accelerating the Peroxidase-Like Activityof Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin andHeparinase Activity [J]. Analytical Chemistry, 2018, 90(10): 6247-52.
[160] JIANG R, ZHAO S, CHEN L K, et al. Fluorescence Detection of Protamine,Heparin and Heparinase II Based on a Novel AIE Molecule with FourCarboxyl [J]. International Journal of Biological Macromolecules, 2020, 156:1153-9.
[161] JENA B K, RAJ C R. Optical Sensing of Biomedically Important PolyionicDrugs Using Nano-Sized Gold Particles [J]. Biosensors & Bioelectronics,2008, 23(8): 1285-90.
[162] ESKO J D, SELLECK S B. Order Out of Chaos: Assembly of Ligand BindingSites in Heparan Sulfate [J]. Annual Review of Biochemistry, 2002, 71: 435-71.
[163] ZHENG J, YE T, CHEN J Y, et al. Highly Sensitive Fluorescence Detection ofHeparin Based on Aggregation Induced Emission of a TetraphenyletheneDerivative [J]. Biosensors & Bioelectronics, 2017, 90: 245-50.
[164] LIU H L, SONG P S, WEI R R, et al. A Facile, Sensitive and SelectiveFluorescent Probe for Heparin Based on Aggregation-Induced Emission [J].Talanta, 2014, 118: 348-52.
[165] GE E J, BUSH A I, CASINI A, et al. Connecting Copper and Cancer: FromTransition Metal Signalling to Metalloplasia [J]. Nature Reviews Cancer, 2022,22(2): 102-13.
[166] LIPPARD S J. Biochemistry - Free copper ions in the cell? [J]. Science, 1999,284(5415): 748-9.
[167] SAILER A, MEIRING J C M, HEISE C, et al. Pyrrole HemithioindigoAntimitotics with Near-Quantitative Bidirectional Photoswitching thatPhotocontrol Cellular Microtubule Dynamics with Single-Cell Precision [J].Angewandte Chemie-International Edition, 2021, 60(44): 23695-704.
[168] WIEDBRAUK S, DUBE H. Hemithioindigo-An Emerging Photoswitch [J].Tetrahedron Letters, 2015, 56(29): 4266-74.
[169] PETERMAYER C, THUMSER S, KINK F, et al. Hemiindigo: Highly BistablePhotoswitching at the Biooptical Window [J]. Journal of the AmericanChemical Society, 2017, 139(42): 15060-7.
[170] PETERMAYER C, DUBE H. Indigoid Photoswitches: Visible LightResponsive Molecular Tools [J]. Accounts of Chemical Research, 2018, 51(5):1153-63.
[171] ROHINI, PAUL K, LUXAMI V. 8-Hydroxyquinoline Fluorophore for Sensingof Metal Ions and Anions [J]. Chemical Record, 2020, 20(12): 1430-73.
[172] YUAN Z Y, LI T Y, ZHANG J F, et al. Fluorescence-Based Method for FastQuantification of Active Aluminums in Natural and Treated Water [J]. Journalof Hazardous Materials, 2022, 433(128815): 1-12.
[173] ZWEIG J E, NEWHOUSE T R. Isomer-Specific Hydrogen Bonding as aDesign Principle for Bidirectionally Quantitative and RedshiftedHemithioindigo Photoswitches [J]. Journal of the American Chemical Society,2017, 139(32): 10956-9.
[174] PETERMAYER C, DUBE H. Circular Dichroism Photoswitching with a Twist:Axially Chiral Hemiindigo [J]. Journal of the American Chemical Society,2018, 140(42): 13558-61.
[175] BARTELMANN T, GNANNT F, ZITZMANN M, et al. Sulfoxidehemithioindigo tweezers - visible light addressable capture and release [J].Chemical Science, 2021, 12(10): 3651-9.
[176] RENNY J S, TOMASEVICH L L, TALLMADGE E H, et al. Method ofContinuous Variations: Applications of Job Plots to the Study of MolecularAssociations in Organometallic Chemistry [J]. Angewandte Chemie-International Edition, 2013, 52(46): 11998-2013.
[177] ZHAI J Y, XIE X J, CHERUBINI T, et al. Ionophore-Based TitrimetricDetection of Alkali Metal Ions in Serum [J]. ACS Sensors, 2017, 2(4): 606-12.
[178] ZHAI J Y, ZHU C Y, PENG X L, et al. Ionophore-Based HeterogeneousCalcium Optical Titration [J]. Electroanalysis, 2018, 30(4): 705-9.
[179] ZHOU W J, HU Z, WEI J X, et al. A Ratiometric Fluorescent Probe Based onPCN-224 for Rapid and Ultrasensitive Detection of Copper Ions [J].Composites Communications, 2022, 33(101221): 1-6.
[180] XIE S Q, LIU Q, ZHU F W, et al. AIE-Active Metal-Organic Frameworks:Facile Preparation, Tunable Light Emission, Ultrasensitive Sensing ofCopper(ii) and Visual Fluorescence Detection of Glucose [J]. Journal ofMaterials Chemistry C, 2020, 8(30): 10408-15.
[181] WANG F X, GU Z Y, LEI W, et al. Graphene Quantum Dots as a FluorescentSensing Platform for Highly Efficient Detection of Copper(II) Ions [J].Sensors and Actuators B-Chemical, 2014, 190: 516-22.
[182] WANG Y H, ZHANG C, CHEN X C, et al. Ratiometric Fluorescent PaperSensor Utilizing Hybrid Carbon Dots-Quantum Dots for the VisualDetermination of Copper Ions [J]. Nanoscale, 2016, 8(11): 5977-84.
[183] YAN F Y, BAI Z J, LIU F, et al. Ratiometric Fluorescence Probes Based onCarbon Dots [J]. Current Organic Chemistry, 2018, 22(1): 57-66.
[184] RAO H B, LIU W, LU Z W, et al. Silica-Coated Carbon Dots Conjugated toCdTe Quantum Dots: A Ratiometric Fluorescent Probe for Copper(II) [J].Microchimica Acta, 2016, 183(2): 581-8.
[185] YAN F Y, BAI Z J, CHEN Y, et al. Ratiometric Fluorescent Detection ofCopper Ions Using Coumarin-Functionalized Carbon Dots Based on FRET [J].Sensors and Actuators B-Chemical, 2018, 275: 86-94.
[186] CHEN J, LI Y, LV K, et al. Cyclam-Functionalized Carbon Dots Sensor forSensitive and Selective Detection of Copper(II) Ion and Sulfide Anion inAqueous Media and its Imaging in Live Cells [J]. Sensors and Actuators BChemical,2016, 224: 298-306.
[187] YAN Z F, FANG L, HE Z G, et al. Surfactant-Modulated a Highly SensitiveFluorescent Probe of Fully Conjugated Covalent Organic Nanosheets forDetecting Copper Ions in Aqueous Solution [J]. Small, 2022, 18(21): 1-11.

所在学位评定分委会
化学
国内图书分类号
O65
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/560395
专题理学院_化学系
推荐引用方式
GB/T 7714
陈青菡. 基于聚合物纳米颗粒的光学离子传感器的构建及其性能研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11949003-陈青菡-化学系.pdf(19354KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈青菡]的文章
百度学术
百度学术中相似的文章
[陈青菡]的文章
必应学术
必应学术中相似的文章
[陈青菡]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。