中文版 | English
题名

Pre-Implementation Method Name Prediction for Object-Oriented Programming

作者
通讯作者Ming,Wen; Bo,Lin
发表日期
2023-05-13
DOI
发表期刊
ISSN
1049-331X
EISSN
1557-7392
卷号32期号:6
摘要
Method naming is a challenging development task in object-oriented programming. In recent years, several research efforts have been undertaken to provide automated tool support for assisting developers in this task. In general, literature approaches assume the availability of method implementation to infer its name. Methods, however, are usually named before their implementations. In this work, we fill the gap in the literature about method name prediction by developing an approach that predicts the names of all methods to be implemented within a class. Our work considers the class name as the input: The overall intuition is that classes with semantically similar names tend to provide similar functionalities, and hence similar method names. We first conduct a large-scale empirical analysis on 258K+ classes from real-world projects to validate our hypotheses. Then, we propose a hybrid big code-driven approach, Mario, to predict method names based on the class name: We combine a deep learning model with heuristics summarized from code analysis. Extensive experiments on 22K+ classes yielded promising results: compared to the state-of-the-art code2seq model (which leverages method implementation data), our approach achieves comparable results in terms of F-score at token-level prediction; our approach, additionally, outperforms code2seq in prediction at the name level. We further show that our approach significantly outperforms several other baselines.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["62002125","61932021"] ; Young Elite Scientists Sponsorship Program by CAST[2021QNRC001] ; European Research Council (ERC) under the European Union[949014]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering
WOS记录号
WOS:001085699500024
出版者
EI入藏号
20234314960355
EI主题词
Codes (symbols) ; Deep learning ; Heuristic methods ; Object oriented programming
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Programming:723.1 ; Data Processing and Image Processing:723.2
ESI学科分类
COMPUTER SCIENCE
来源库
人工提交
出版状态
在线出版
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/564122
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.National University of Defense Technology
2.Huazhong University of Science and Technology
3.Southern University of Science and Technology
4.University of Luxembourg
推荐引用方式
GB/T 7714
Shangwen,Wang,Ming,Wen,Bo,Lin,et al. Pre-Implementation Method Name Prediction for Object-Oriented Programming[J]. ACM Transactions on Software Engineering and Methodology,2023,32(6).
APA
Shangwen,Wang,Ming,Wen,Bo,Lin,Yepang,Liu,Tegawendé F.,Bissyandé,&Xiaoguang,Mao.(2023).Pre-Implementation Method Name Prediction for Object-Oriented Programming.ACM Transactions on Software Engineering and Methodology,32(6).
MLA
Shangwen,Wang,et al."Pre-Implementation Method Name Prediction for Object-Oriented Programming".ACM Transactions on Software Engineering and Methodology 32.6(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shangwen,Wang]的文章
[Ming,Wen]的文章
[Bo,Lin]的文章
百度学术
百度学术中相似的文章
[Shangwen,Wang]的文章
[Ming,Wen]的文章
[Bo,Lin]的文章
必应学术
必应学术中相似的文章
[Shangwen,Wang]的文章
[Ming,Wen]的文章
[Bo,Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。