中文版 | English
题名

Compatibility Issues in Deep Learning Systems: Problems and Opportunities

作者
通讯作者Guanping Xiao
DOI
发表日期
2023
会议名称
31st ACM Joint Meeting of the European Software Engineering Conference / Symposium on the Foundations-of-Software-Engineering (ESEC/FSE)
会议录名称
会议日期
DEC 03-09, 2023
会议地点
null,San Francisco,CA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Deep learning (DL) systems are complex component-based systems, which consist of core program (code implementation and data), Python (language and interpreter), third-party libraries, low-level libraries, development tools, OS, and hardware environments. Incompatible interaction between components would cause serious compatibility issues, substantially affecting the development and deployment processes. What types of compatibility issues are frequently exposed in DL systems? What are the root causes of such issues and how do developers fix them? How far are we from automatically detecting and fixing DL compatibility issues? Although there are many existing studies on DL bugs, the characteristics of DL compatibility issues have rarely been systematically studied and the above questions remain largely unexplored. To fill this gap, we conduct the first comprehensive empirical study to characterize compatibility issues in DL systems. Through analyzing 352 DL compatibility issues classified from 3,072 posts on Stack Overfiow, we present their types, manifestation stages, and symptoms. We further summarize the root causes and common fixing strategies, and conduct a tool survey on the current research status of automated detection and repair of DL compatibility issues. Our study allows researchers and practitioners to gain a better understanding of DL compatibility issues and can facilitate future tool development.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[62002163]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001148157800040
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/564129
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Nanjing University of Aeronautics and Astronautics
2.Southern University of Science and Technology
3.University of New South Wales
推荐引用方式
GB/T 7714
Jun Wang,Guanping Xiao,Shuai Zhang,et al. Compatibility Issues in Deep Learning Systems: Problems and Opportunities[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
ESEC-FSE2023b.pdf(2148KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jun Wang]的文章
[Guanping Xiao]的文章
[Shuai Zhang]的文章
百度学术
百度学术中相似的文章
[Jun Wang]的文章
[Guanping Xiao]的文章
[Shuai Zhang]的文章
必应学术
必应学术中相似的文章
[Jun Wang]的文章
[Guanping Xiao]的文章
[Shuai Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。