题名 | ICCVAE: Item Concept Causal Variational Auto-Encoder for top-n recommendation |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP)
|
ISBN | 979-8-3503-0246-2
|
会议录名称 | |
页码 | 908-913
|
会议日期 | 21-23 April 2023
|
会议地点 | Xi'an, China
|
摘要 | Recently, recommendation systems, especially interpretable ones, have become increasingly popular. The recommendation system provides personalized recommendations to users based on their previous behaviour data. Existing approaches often transfer methods in disentangle learning, especially Variational Auto-Encoder (VAE) framework, into the recommendation system. However, VAE is proved sub-optimal due to the independence factor assumption. Unfortunately, few research focuses on the VAE framework without an independent assumption for recommendation system. To escape from sub-optimality from independence assumption and provide more interpretability, in this paper, we propose a new method for top-n recommendation tasks called Item Concept Causal Variational Auto-Encoder (ICCVAE), enabling to build up causal structure for factors, i.e., item concepts in recommendation system. We conduct experiments to prove superiority for ICCVAE. Our framework can reach up to 5.3%, 3.4%, and 6.1% definite improvement over baselines in terms of Recall@20, Recall@50 and NDCG@100. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20234314942598
|
EI主题词 | Learning Systems
; Signal Encoding
|
EI分类号 | Information Theory And Signal Processing:716.1
; Computer Applications:723.5
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10248832 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/567754 |
专题 | 理学院_统计与数据科学系 |
作者单位 | Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 统计与数据科学系 |
第一作者的第一单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Jingyun Feng,Qianqian Wang,Zhejun Huang,et al. ICCVAE: Item Concept Causal Variational Auto-Encoder for top-n recommendation[C],2023:908-913.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
ICCVAE_Item_Concept_(1796KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论