中文版 | English
题名

Negatively Correlated Search for Constrained Optimization

作者
通讯作者Xiaofen Lu
DOI
发表日期
2023
会议名称
2023 IEEE Congress on Evolutionary Computation
ISBN
979-8-3503-1459-5
会议录名称
页码
1-10
会议日期
1-5 July 2023
会议地点
Chicago, IL, USA
会议举办国
USA
摘要
Evolutionary algorithms (EAs) combined with constraint handling techniques (CHTs) are very effective in solving constrained optimization problems (COPs). Recently, negatively correlated search (NCS) has been shown to be powerful for real-world multimodal optimization problems (MMOP). However, there has been few works on utilizing NCS to solve COPs. In this paper, we present a novel constrained optimization evolutionary algorithm (COEA) named NCS-E which combined NCS with a new CHT ensemble method to deal with COPs. It integrates three complementary CHTs as voters, and individuals are first voted by each voter, then the individual with more weighted votes is considered better. In addition, the negative correlation information of the voted individuals is utilized to adaptively adjust the voting weights. To demonstrate the performance of NCS-E, NCS-E is compared with four NCS-based COEAs and two state-of-the-art methods, ∊MAgES and MAgES-VMCH, on 57 real-world COPs. The statistical results show that NCS-E exhibits the best performance among the compared methods. Moreover, NCS-E was applied to solve the Deep Neural Network pruning problem and compared with the state-of-the-art pruning method OLMP on three reference models. Empirical results show that the proposed method improves the performance of OLMP on all three DNN pruning tasks.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
EI入藏号
20234314944546
EI主题词
Constraint Handling ; Deep Neural Networks ; Evolutionary Algorithms
EI分类号
Ergonomics And Human Factors Engineering:461.4 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Systems Science:961
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10254141
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/567757
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, The Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yuan Li,Xiaofen Lu,Xin Yao. Negatively Correlated Search for Constrained Optimization[C],2023:1-10.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan Li]的文章
[Xiaofen Lu]的文章
[Xin Yao]的文章
百度学术
百度学术中相似的文章
[Yuan Li]的文章
[Xiaofen Lu]的文章
[Xin Yao]的文章
必应学术
必应学术中相似的文章
[Yuan Li]的文章
[Xiaofen Lu]的文章
[Xin Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。