中文版 | English
题名

Improved and Stable Data-Based Tracking Control via Approximate Iterative Q-Learning

作者
DOI
发表日期
2023
ISSN
2832-188X
ISBN
979-8-3503-3906-2
会议录名称
页码
275-280
会议日期
16-18 June 2023
会议地点
Shenzhen, China
摘要
In this paper, to avoid computing the feedward control input and to completely eliminate the tracking error, an improved cost function with respect to the tracking error is proposed, under which the optimal tracking controller can stabilize the tracking error system. Then, the approximate value-iteration-based Q-learning is given to solve the neuro-optimal control policy. Also, the finite error bound of the approximate Q-function is established. In addition, for guaranteeing the admissibility of the obtained control policies, some stability conditions for this data-based iterative Q-learning are developed. When the stability conditions are satisfied, it is ensured that the iterative control policies derived from the critic network and the trained action network with approximation errors will stabilize the tracking error system. Finally, a simulation example is employed to implement the data-based Q-learning algorithm and verify the present theoretical results.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20234214906875
EI主题词
Adaptive control systems ; Discrete time control systems ; Dynamic programming ; Errors ; Iterative methods ; Learning algorithms ; Navigation ; Reinforcement learning ; System stability
EI分类号
Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Control Systems:731.1 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Systems Science:961
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10245683
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/567761
专题工学院_系统设计与智能制造学院
作者单位
1.School of Automation Guangdong University of Technology, Guangzhou, China
2.School of System Design and Intelligent Manufacturing Southern University of Science and Technology, Shenzhen, China
3.School of Intelligence Science and Technology and Institute of Artificial Intelligence University of Science and Technology Beijing, Beijing, China
推荐引用方式
GB/T 7714
Zhantao Liang,Weiming Liu,Mingming Ha,et al. Improved and Stable Data-Based Tracking Control via Approximate Iterative Q-Learning[C],2023:275-280.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhantao Liang]的文章
[Weiming Liu]的文章
[Mingming Ha]的文章
百度学术
百度学术中相似的文章
[Zhantao Liang]的文章
[Weiming Liu]的文章
[Mingming Ha]的文章
必应学术
必应学术中相似的文章
[Zhantao Liang]的文章
[Weiming Liu]的文章
[Mingming Ha]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。