中文版 | English
题名

Seed Feature Maps-based CNN Models for LEO Satellite Remote Sensing Services

作者
DOI
发表日期
2023
ISSN
2836-3876
ISBN
979-8-3503-0486-2
会议录名称
页码
415-425
会议日期
2-8 July 2023
会议地点
Chicago, IL, USA
摘要
Deploying high-performance convolutional neural network (CNN) models on low-earth orbit (LEO) satellites for rapid remote sensing image processing has attracted significant interest from industry and academia. However, the limited resources available on LEO satellites contrast with the demands of resource-intensive CNN models, necessitating the adoption of ground-station server assistance for training and updating these models. Existing approaches often require large floating-point operations (FLOPs) and substantial model parameter transmissions, presenting considerable challenges. To address these issues, this paper introduces a ground-station server-assisted framework. With the proposed framework, each layer of the CNN model contains only one learnable feature map (called the seed feature map) from which other feature maps are generated based on specific rules. The hyperparameters of these rules are randomly generated instead of being trained, thus enabling the generation of multiple feature maps from the seed feature map and significantly reducing FLOPs. Furthermore, since the random hyperparameters can be saved using a few random seeds, the ground station server assistance can be facilitated in updating the CNN model deployed on the LEO satellite. Experimental results on the ISPRS Vaihingen, ISPRS Potsdam, UAVid, and LoveDA datasets for semantic segmentation services demonstrate that the proposed framework outperforms existing state-of-the-art approaches. In particular, the SineFM-based model achieves a higher mIoU than the UNetFormer on the UAVid dataset, with 3.3 × fewer parameters and 2.2 × fewer FLOPs.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20234214907609
EI主题词
Convolutional neural networks ; Digital arithmetic ; Image processing ; Orbits ; Remote sensing ; Satellites ; Semantics
EI分类号
Satellites:655.2 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Numerical Methods:921.6
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10248321
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/567781
专题工学院_计算机科学与工程系
作者单位
1.School of Software Engineering, Sun Yat-sen University, Zhuhai, China
2.School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
3.Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
4.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
5.New York University, New York, NY, USA
6.Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
推荐引用方式
GB/T 7714
Zhichao Lu,Chuntao Ding,Shangguang Wang,et al. Seed Feature Maps-based CNN Models for LEO Satellite Remote Sensing Services[C],2023:415-425.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhichao Lu]的文章
[Chuntao Ding]的文章
[Shangguang Wang]的文章
百度学术
百度学术中相似的文章
[Zhichao Lu]的文章
[Chuntao Ding]的文章
[Shangguang Wang]的文章
必应学术
必应学术中相似的文章
[Zhichao Lu]的文章
[Chuntao Ding]的文章
[Shangguang Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。