[1] J. Li, B. Esteban-Fernandez de Avila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification, Sci. Robot. 2(4) (2017) eaam6431. https://doi.org/10.1126/scirobotics.aam6431.
[2] S.K. Srivastava, G. Clergeaud, T.L. Andresen, A. Boisen, Micromotors for drug delivery in vivo: The road ahead, Adv. Drug Deliv. Rev. 138 (2019) 41-55. https://doi.org/10.1016/j.addr.2018.09.005.
[3] C. Gao, Y. Wang, Z. Ye, Z. Lin, X. Ma, Q. He, Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging, Adv Mater 33(6) (2021) e2000512. https://doi.org/10.1002/adma.202000512.
[4] G. Go, A. Yoo, H.W. Song, H.K. Min, S. Zheng, K.T. Nguyen, S. Kim, B. Kang, A. Hong, C.S. Kim, J.O. Park, E. Choi, Multifunctional biodegradable microrobot with programmable morphology for biomedical applications, ACS Nano 15(1) (2021) 1059-1076. https://doi.org/10.1021/acsnano.0c07954.
[5] M. Thiriet, K.H. Parker, Physiology and pathology of the cardiovascular system: A physical perspective, in: L. Formaggia, A. Quarteroni, A. Veneziani (Eds.), Cardiovascular mathematics: Modeling and simulation of the circulatory system, Springer Milan, Milano, 2009, pp. 1-45.
[6] R. Lopez-Benitez, G.M. Richter, H.U. Kauczor, S. Stampfl, J. Kladeck, B.A. Radeleff, M. Neukamm, P.J. Hallscheidt, Analysis of nontarget embolization mechanisms during embolization and chemoembolization procedures, Cardiovasc. Intervent. Radiol. 32(4) (2009) 615-622. https://doi.org/10.1007/s00270-009-9568-9.
[7] A.W. Heldman, L. Cheng, G.M. Jenkins, P.F. Heller, D.W. Kim, M. Ware, C. Nater, R.H. Hruban, B. Rezai, B.S. Abella, K.E. Bunge, J.L. Kinsella, S.J. Sollott, E.G. Lakatta, J.A. Brinker, W.L. Hunter, J.P. Froehlich, Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis, Circulation 103(18) (2001) 2289-2295. https://doi.org/10.1161/01.CIR.103.18.2289.
[8] S. Chen, B. Zhang, B. Zhang, H. Lin, H. Yang, F. Zheng, M. Chen, Y. Ke, Assessment of structure integrity, corrosion behavior and microstructure change of az31b stent in porcine coronary arteries, J. Mater. Sci. Technol. 39 (2020) 39-47. https://doi.org/10.1016/j.jmst.2018.12.017.
[9] H. Kitahara, K. Okada, T. Kimura, P.G. Yock, A.J. Lansky, J.J. Popma, A.C. Yeung, P.J. Fitzgerald, Y. Honda, Impact of stent size selection on acute and long-term outcomes after drug-eluting stent implantation in de novo coronary lesions, Circ. Cardiovasc. Interv. 10(10) (2017) e004795. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004795.
[10] L. Sun, X. Gao, D. Wu, Q. Guo, Advances in physiologically relevant actuation of shape memory polymers for biomedical applications, Polym. Rev. (2020) 1-39. https://doi.org/10.1080/15583724.2020.1825487.
[11] J.N. Rodriguez, F.J. Clubb, T.S. Wilson, M.W. Miller, T.W. Fossum, J. Hartman, E. Tuzun, P. Singhal, D.J. Maitland, In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model, J. Biomed. Mater. Res. A 102(5) (2014) 1231-1242. https://doi.org/10.1002/jbm.a.34782.
[12] Y. Zhang, H. Gao, H. Wang, Z. Xu, X. Chen, B. Liu, Y. Shi, Y. Lu, L. Wen, Y. Li, Z. Li, Y. Men, X. Feng, W. Liu, Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries, Adv. Funct. Mater. 28(9) (2018) 1705962. https://doi.org/10.1002/adfm.201705962.
[13] S. Sharifi, T.G. van Kooten, H.J. Kranenburg, B.P. Meij, M. Behl, A. Lendlein, D.W. Grijpma, An annulus fibrosus closure device based on a biodegradable shape-memory polymer network, Biomaterials 34(33) (2013) 8105-8113. https://doi.org/10.1016/j.biomaterials.2013.07.061.
[14] X. Jing, H.Y. Mi, H.X. Huang, L.S. Turng, Shape memory thermoplastic polyurethane (tpu)/poly(epsilon-caprolactone) (pcl) blends as self-knotting sutures, J. Mech. Behav. Biomed. Mater. 64 (2016) 94-103. https://doi.org/10.1016/j.jmbbm.2016.07.023.
[15] Y. Zheng, Y. Li, X. Hu, J. Shen, S. Guo, Biocompatible shape memory blend for self-expandable stents with potential biomedical applications, ACS Appl. Mater. Interfaces 9(16) (2017) 13988-13998. https://doi.org/10.1021/acsami.7b04808.
[16] X. Wan, H.Q. Wei, F.H. Zhang, Y.J. Liu, J.S. Leng, 3d printing of shape memory poly(d,l-lactide-co-trimethylene carbonate) by direct ink writing for shape-changing structures, J Appl Polym Sci 136(44) (2019) 48177. https://doi.org/10.1002/app.48177.
[17] Q. Ge, Z. Chen, J. Cheng, B. Zhang, Y.F. Zhang, H. Li, X. He, C. Yuan, J. Liu, S. Magdassi, S. Qu, 3d printing of highly stretchable hydrogel with diverse uv curable polymers, Sci. Adv. 7(2) (2021) eaba4261. https://doi.org/10.1126/sciadv.aba4261.
[18] R. Zamani Alavijeh, P. Shokrollahi, J. Barzin, A thermally and water activated shape memory gelatin physical hydrogel, with a gel point above the physiological temperature, for biomedical applications, J. Mater. Chem. B 5(12) (2017) 2302-2314. https://doi.org/10.1039/c7tb00014f.
[19] M. Jahangiri, A.E. Kalajahi, M. Rezaei, M. Bagheri, Shape memory hydroxypropyl cellulose-g-poly (ε-caprolactone) networks with controlled drug release capabilities, J. Polym. Res. 26(6) (2019) 136. https://doi.org/10.1007/s10965-019-1798-1.
[20] S.M. Brosnan, A.M. Jackson, Y. Wang, V.S. Ashby, Shape memory particles capable of controlled geometric and chemical asymmetry made from aliphatic polyesters, Macromol. Rapid Commun. 35(19) (2014) 1653-1660. https://doi.org/10.1002/marc.201400199.
[21] L.M. Cox, J.P. Killgore, Z. Li, Z. Zhang, D.C. Hurley, J. Xiao, Y. Ding, Morphing metal-polymer janus particles, Adv. Mater. 26(6) (2014) 899-904. https://doi.org/10.1002/adma.201304079.
[22] F. Friess, U. Nochel, A. Lendlein, C. Wischke, Polymer micronetworks with shape-memory as future platform to explore shape-dependent biological effects, Adv. Healthcare Mater. 3(12) (2014) 1986-1990. https://doi.org/10.1002/adhm.201400433.
[23] T. Gong, K. Zhao, W. Wang, H. Chen, L. Wang, S. Zhou, Thermally activated reversible shape switch of polymer particles, J. Mater. Chem. B 2(39) (2014) 6855-6866. https://doi.org/10.1039/c4tb01155d.
[24] C. Wischke, A. Lendlein, Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices, Langmuir 30(10) (2014) 2820-2827. https://doi.org/10.1021/la4025926.
[25] C. Wischke, M. Schossig, A. Lendlein, Shape-memory effect of micro-/nanoparticles from thermoplastic multiblock copolymers, Small 10(1) (2014) 83-87. https://doi.org/10.1002/smll.201202213.
[26] Q. Zhang, T. Sauter, L. Fang, K. Kratz, A. Lendlein, Shape-memory capability of copolyetheresterurethane microparticles prepared via electrospraying, Macromol. Mater. Eng. 300(5) (2015) 522-530. https://doi.org/10.1002/mame.201400267.
[27] L.M. Cox, J.P. Killgore, Z. Li, R. Long, A.W. Sanders, J. Xiao, Y. Ding, Influences of substrate adhesion and particle size on the shape memory effect of polystyrene particles, Langmuir 32(15) (2016) 3691-3698. https://doi.org/10.1021/acs.langmuir.6b00588.
[28] Q. Guo, C.J. Bishop, R.A. Meyer, D.R. Wilson, L. Olasov, D.E. Schlesinger, P.T. Mather, J.B. Spicer, J.H. Elisseeff, J.J. Green, Entanglement-based thermoplastic shape memory polymeric particles with photothermal actuation for biomedical applications, ACS Appl. Mater. Interfaces 10(16) (2018) 13333-13341. https://doi.org/10.1021/acsami.8b01582.
[29] C. Zhou, Y. Ni, W. Liu, B. Tan, M. Yao, L. Fang, C. Lu, Z. Xu, Near-infrared light-induced sequential shape recovery and separation of assembled temperature memory polymer microparticles, Macromol. Rapid Commun. 41(8) (2020) e2000043. https://doi.org/10.1002/marc.202000043.
[30] Y. Liu, M.Y. Razzaq, T. Rudolph, L. Fang, K. Kratz, A. Lendlein, Two-level shape changes of polymeric microcuboids prepared from crystallizable copolymer networks, Macromolecules 50(6) (2017) 2518-2527. https://doi.org/10.1021/acs.macromol.6b02237.
[31] Y. Liu, O.E.C. Gould, T. Rudolph, L. Fang, K. Kratz, A. Lendlein, Polymeric microcuboids programmable for temperature‐memory, Macromol. Mater. Eng. 305(10) (2020) 2000333. https://doi.org/10.1002/mame.202000333.
[32] F. Zhang, T. Zhao, D. Ruiz-Molina, Y. Liu, C. Roscini, J. Leng, S.K. Smoukov, Shape memory polyurethane microcapsules with active deformation, ACS Appl. Mater. Interfaces 12(41) (2020) 47059-47064. https://doi.org/10.1021/acsami.0c14882.
[33] J. Zhang, X. Zheng, F. Wu, B. Yan, S. Zhou, S. Qu, J. Weng, Shape memory actuation of janus nanoparticles with amphipathic cross-linked network, ACS Macro Lett. 5(12) (2016) 1317-1321. https://doi.org/10.1021/acsmacrolett.6b00730.
[34] B. Yan, X. Zheng, P. Tang, H. Yang, J. He, S. Zhou, Investigating switchable nanostructures in shape memory process for amphipathic janus nanoparticles, ACS Appl. Mater. Interfaces 10(42) (2018) 36249-36258. https://doi.org/10.1021/acsami.8b11276.
[35] Y. Zhang, H. Gao, H. Wang, Z. Xu, X. Chen, B. Liu, Y. Shi, Y. Lu, L. Wen, Y. Li, Z. Li, Y. Men, X. Feng, W. Liu, Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries, Advanced Functional Materials 28(9) (2018). https://doi.org/10.1002/adfm.201705962.
[36] B. Liu, Z. Xu, H. Gao, C. Fan, G. Ma, D. Zhang, M. Xiao, B. Zhang, Y. Yang, C. Cui, T. Wu, X. Feng, W. Liu, Stiffness self‐tuned shape memory hydrogels for embolization of aneurysms, Advanced Functional Materials 30(22) (2020). https://doi.org/10.1002/adfm.201910197.
[37] D. Shi, H. Zhang, H. Zhang, L. Li, S. Li, Y. Zhao, C. Zheng, G. Nie, X. Yang, The synergistic blood-vessel-embolization of coagulation fusion protein with temperature sensitive nanogels in interventional therapies on hepatocellular carcinoma, Chemical Engineering Journal 433 (2022). https://doi.org/10.1016/j.cej.2021.134357.
[38] H. Li, K. Qian, H. Zhang, L. Li, L. Yan, S. Geng, H. Zhao, H. Zhang, B. Xiong, Z. Li, C. Zheng, Y. Zhao, X. Yang, Pickering gel emulsion of lipiodol stabilized by hairy nanogels for intra-artery embolization antitumor therapy, Chemical Engineering Journal 418 (2021). https://doi.org/10.1016/j.cej.2021.129534.
[39] L. Li, Y. Liu, H. Li, X. Guo, X. He, S. Geng, H. Zhao, X. Peng, D. Shi, B. Xiong, G. Zhou, Y. Zhao, C. Zheng, X. Yang, Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization, Theranostics 8(22) (2018) 6291-6306. https://doi.org/10.7150/thno.28845.
[40] Y. Liu, X. Peng, K. Qian, Y. Ma, J. Wan, H. Li, H. Zhang, G. Zhou, B. Xiong, Y. Zhao, C. Zheng, X. Yang, Temperature sensitive p(n-isopropylacrylamide-co-acrylic acid) modified gold nanoparticles for trans-arterial embolization and angiography, J Mater Chem B 5(5) (2017) 907-916. https://doi.org/10.1039/c6tb02383e.
[41] Y. Ma, J. Wan, K. Qian, S. Geng, N. He, G. Zhou, Y. Zhao, X. Yang, The studies on highly concentrated complex dispersions of gold nanoparticles and temperature-sensitive nanogels and their application as new blood-vessel-embolic materials with high-resolution angiography, J Mater Chem B 2(36) (2014) 6044-6053. https://doi.org/10.1039/c4tb00748d.
[42] Y. Zhao, C. Zheng, Q. Wang, J. Fang, G. Zhou, H. Zhao, Y. Yang, H. Xu, G. Feng, X. Yang, Permanent and peripheral embolization: Temperature-sensitive p(n-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors, Advanced Functional Materials 21(11) (2011) 2035-2042. https://doi.org/10.1002/adfm.201002510.
[43] T. Mu, L. Liu, X. Lan, Y. Liu, J. Leng, Shape memory polymers for composites, Composites Science and Technology 160 (2018) 169-198. https://doi.org/10.1016/j.compscitech.2018.03.018.
[44] H. Yang, X. Zheng, Z. Zheng, J. He, D. Kong, K. Ding, S. Zhou, Precise control of shape-variable nanomicelles in nanofibers reveals the enhancement mechanism of passive delivery, ACS Appl Mater Interfaces 13(46) (2021) 54715-54726. https://doi.org/10.1021/acsami.1c15858.
[45] Q. Guo, C.J. Bishop, R.A. Meyer, D.R. Wilson, L. Olasov, D.E. Schlesinger, P.T. Mather, J.B. Spicer, J.H. Elisseeff, J.J. Green, Entanglement-based thermoplastic shape memory polymeric particles with photothermal actuation for biomedical applications, ACS Appl Mater Interfaces 10(16) (2018) 13333-13341. https://doi.org/10.1021/acsami.8b01582.
[46] T. Gong, K. Zhao, W. Wang, H. Chen, L. Wang, S. Zhou, Thermally activated reversible shape switch of polymer particles, J Mater Chem B 2(39) (2014) 6855-6866. https://doi.org/10.1039/c4tb01155d.
[47] F. Friess, U. Nochel, A. Lendlein, C. Wischke, Polymer micronetworks with shape-memory as future platform to explore shape-dependent biological effects, Adv Healthc Mater 3(12) (2014) 1986-1990. https://doi.org/10.1002/adhm.201400433.
[48] S.M. Brosnan, A.M. Jackson, Y. Wang, V.S. Ashby, Shape memory particles capable of controlled geometric and chemical asymmetry made from aliphatic polyesters, Macromol Rapid Commun 35(19) (2014) 1653-1660. https://doi.org/10.1002/marc.201400199.
[49] C. Zhou, Y. Ni, W. Liu, B. Tan, M. Yao, L. Fang, C. Lu, Z. Xu, Near-infrared light-induced sequential shape recovery and separation of assembled temperature memory polymer microparticles, Macromol Rapid Commun 41(8) (2020) e2000043. https://doi.org/10.1002/marc.202000043.
[50] J. Huang, L. Lai, H. Chen, S. Chen, J. Gao, Development of a new shape-memory polymer in the form of microspheres, Materials Letters 225 (2018) 24-27. https://doi.org/10.1016/j.matlet.2018.04.066.
[51] Q. Zhang, T. Sauter, L. Fang, K. Kratz, A. Lendlein, Shape-memory capability of copolyetheresterurethane microparticles prepared via electrospraying, Macromolecular Materials and Engineering 300(5) (2015) 522-530. https://doi.org/10.1002/mame.201400267.
[52] L.M. Cox, J.P. Killgore, Z. Li, Z. Zhang, D.C. Hurley, J. Xiao, Y. Ding, Morphing metal-polymer janus particles, Adv Mater 26(6) (2014) 899-904. https://doi.org/10.1002/adma.201304079.
[53] B. Yan, X. Zheng, P. Tang, H. Yang, J. He, S. Zhou, Investigating switchable nanostructures in shape memory process for amphipathic janus nanoparticles, ACS Appl Mater Interfaces 10(42) (2018) 36249-36258. https://doi.org/10.1021/acsami.8b11276.
[54] J. Zhang, X. Zheng, F. Wu, B. Yan, S. Zhou, S. Qu, J. Weng, Shape memory actuation of janus nanoparticles with amphipathic cross-linked network, ACS Macro Letters 5(12) (2016) 1317-1321. https://doi.org/10.1021/acsmacrolett.6b00730.
[55] U. Mendibil, R. Ruiz-Hernandez, S. Retegi-Carrion, N. Garcia-Urquia, B. Olalde-Graells, A. Abarrategi, Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds, Int J Mol Sci 21(15) (2020). https://doi.org/10.3390/ijms21155447.
[56] D. Choudhury, M. Yee, Z.L.J. Sheng, A. Amirul, M.W. Naing, Decellularization systems and devices: State-of-the-art, Acta Biomater 115 (2020) 51-59. https://doi.org/10.1016/j.actbio.2020.07.060.
[57] T.J. Keane, I.T. Swinehart, S.F. Badylak, Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance, Methods 84 (2015) 25-34. https://doi.org/10.1016/j.ymeth.2015.03.005.
[58] J. Liao, B. Xu, R. Zhang, Y. Fan, H. Xie, X. Li, Applications of decellularized materials in tissue engineering: Advantages, drawbacks and current improvements, and future perspectives, J Mater Chem B 8(44) (2020) 10023-10049. https://doi.org/10.1039/d0tb01534b.
[59] G. Mazza, K. Rombouts, A. Rennie Hall, L. Urbani, T. Vinh Luong, W. Al-Akkad, L. Longato, D. Brown, P. Maghsoudlou, A.P. Dhillon, B. Fuller, B. Davidson, K. Moore, D. Dhar, P. De Coppi, M. Malago, M. Pinzani, Decellularized human liver as a natural 3d-scaffold for liver bioengineering and transplantation, Sci Rep 5 (2015) 13079. https://doi.org/10.1038/srep13079.
[60] B.E. Uygun, A. Soto-Gutierrez, H. Yagi, M.L. Izamis, M.A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, K. Uygun, Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix, Nat Med 16(7) (2010) 814-820. https://doi.org/10.1038/nm.2170.
[61] Y. Liu, L. Qin, R. Tong, T. Liu, C. Ling, T. Lei, D. Zhang, Y. Wang, S. Deng, Regulatory changes in china on xenotransplantation and related products, Xenotransplantation 27(3) (2020) e12601. https://doi.org/10.1111/xen.12601.
[62] Y. Gao, Z. Li, Y. Hong, T. Li, X. Hu, L. Sun, Z. Chen, Z. Chen, Z. Luo, X. Wang, J. Kong, G. Li, H.-L. Wang, H.L. Leo, H. Yu, L. Xi, Q. Guo, Decellularized liver as a translucent ex vivo model for vascular embolization evaluation, Biomaterials 240 (2020). https://doi.org/10.1016/j.biomaterials.2020.119855.
[63] X. Gao, Z. Chen, Z. Chen, X. Liu, Y. Luo, J. Xiao, Y. Gao, Y. Ma, C. Liu, H.L. Leo, H. Yu, Q. Guo, Visualization and evaluation of chemoembolization on a 3d decellularized organ scaffold, ACS Biomater Sci Eng 7(12) (2021) 5642-5653. https://doi.org/10.1021/acsbiomaterials.1c01005.
[64] X. Shen, Q. Wang, W. Chen, Y. Pang, One-step synthesis of water-dispersible cysteine functionalized magnetic fe3o4 nanoparticles for mercury(ii) removal from aqueous solutions, Appl. Surf. Sci. 317 (2014) 1028-1034. https://doi.org/10.1016/j.apsusc.2014.09.033.
[65] J.W. Yoo, S. Mitragotri, Polymer particles that switch shape in response to a stimulus, Proc. Natl Acad. Sci. USA 107(25) (2010) 11205-11210. https://doi.org/10.1073/pnas.1000346107.
[66] R.A. Meyer, R.S. Meyer, J.J. Green, An automated multidimensional thin film stretching device for the generation of anisotropic polymeric micro- and nanoparticles, J. Biomed. Mater. Res. A 103(8) (2015) 2747-2757. https://doi.org/10.1002/jbm.a.35399.
[67] R.Z. Li, Time-temperature superposition method for glass transition temperature of plastic materials, Mat Sci Eng a-Struct 278(1-2) (2000) 36-45.
[68] M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc. 77(14) (1955) 3701-3707. https://doi.org/10.1021/ja01619a008.
[69] P.A. O’Connell, G.B. McKenna, Arrhenius-type temperature dependence of the segmental relaxation below tg, J. Chem. Phys. 110(22) (1999) 11054-11060. https://doi.org/10.1063/1.479046.
[70] E.A. Di Marzio, A.J. Yang, Configurational entropy approach to the kinetics of glasses, J. Res. Natl. Inst. Stand. Technol. 102(2) (1997) 135-157. https://doi.org/10.6028/jres.102.011.
[71] Q. Ge, K. Yu, Y. Ding, H. Jerry Qi, Prediction of temperature-dependent free recovery behaviors of amorphous shape memory polymers, Soft Matter 8(43) (2012) 11098-11105. https://doi.org/10.1039/c2sm26249e.
[72] Y. Gao, Z. Li, Y. Hong, T. Li, X. Hu, L. Sun, Z. Chen, Z. Chen, Z. Luo, X. Wang, J. Kong, G. Li, H.L. Wang, H.L. Leo, H. Yu, L. Xi, Q. Guo, Decellularized liver as a translucent ex vivo model for vascular embolization evaluation, Biomaterials 240 (2020) 119855. https://doi.org/10.1016/j.biomaterials.2020.119855.
[73] W. Nichols, M. O’Rourke, V. C, Properties of the arterial wall: Theory, in: W. Nichols, M. O’Rourke, V. C (Eds.), Mcdonald’s blood flow in arteries theoretical, experimental and clinical principles, CRC Press, London, UK, 2011, pp. 55-75.
[74] S. Umale, S. Chatelin, N. Bourdet, C. Deck, M. Diana, P. Dhumane, L. Soler, J. Marescaux, R. Willinger, Experimental in vitro mechanical characterization of porcine glisson's capsule and hepatic veins, J. Biomech. 44(9) (2011) 1678-1683. https://doi.org/10.1016/j.jbiomech.2011.03.029.
[75] R. Marlow, A general first-invariant hyperelastic constitutive model, in: J. Busfield, A. Muhr (Eds.), Constitutive models for rubber iii: Proceedings of the third european conference on constitutive models for rubber, CRC Press, London, UK, 2003, pp. 157-160.
[76] A. Prasad, N. Xiao, X.Y. Gong, C.K. Zarins, C.A. Figueroa, A computational framework for investigating the positional stability of aortic endografts, Biomech. Model. Mechanobiol. 12(5) (2013) 869-887. https://doi.org/10.1007/s10237-012-0450-3.
[77] S. de Gelidi, G. Tozzi, A. Bucchi, The effect of thickness measurement on numerical arterial models, Mater. Sci. Eng. C Mater. Biol. Appl. 76 (2017) 1205-1215. https://doi.org/10.1016/j.msec.2017.02.123.
[78] Y. Xing, Y. Jia, Z. Zhan, J. Li, C. Hu, A flexible magnetic field mapping model for calibration of magnetic manipulation system, 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 7281-7287.
[79] Y. Xing, D. Hussain, C. Hu, Optimized dynamic motion performance for a 5-dof electromagnetic manipulation, IEEE Robotics and Automation Letters 7(4) (2022) 8604-8610. https://doi.org/10.1109/lra.2022.3187501.
[80] K. Yu, Q. Ge, H.J. Qi, Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers, Nat. Commun. 5 (2014) 3066. https://doi.org/10.1038/ncomms4066.
[81] A. Lendlein, S. Kelch, K. Kratz, J. Schulte, Shape-memory polymers, in: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Eds.), Encyclopedia of materials: Science and technology, Elsevier, Oxford, 2005, pp. 1-9.
[82] J.L. White, J.E. Spruiell, The specification of orientation and its development in polymer processing, Polym. Eng. Sci. 23(5) (1983) 247-256. https://doi.org/DOI 10.1002/pen.760230503.
[83] C. Debbaut, P. Segers, P. Cornillie, C. Casteleyn, M. Dierick, W. Laleman, D. Monbaliu, Analyzing the human liver vascular architecture by combining vascular corrosion casting and micro-ct scanning: A feasibility study, J. Anat. 224(4) (2014) 509-517. https://doi.org/10.1111/joa.12156.
[84] A. Nakai, I. Sekiya, A. Oya, T. Koshino, T. Araki, Assessment of the hepatic arterial and portal venous blood flows during pregnancy with doppler ultrasonography, Arch. Gynecol. Obstet. 266(1) (2002) 25-29. https://doi.org/10.1007/pl00007495.
[85] J.Y. Li, X.J. Li, T. Luo, R. Wang, C.C. Liu, S.X. Chen, D.F. Li, J.B. Yue, S.H. Cheng, D. Sun, Development of a magnetic microrobot for carrying and delivering targeted cells, Sci. Robotics 3(19) (2018) eaat8829. https://doi.org/10.1126/scirobotics.aat8829.
[86] L. Fan, M. Duan, Z. Xie, K. Pan, X. Wang, X. Sun, Q. Wang, W. Rao, J. Liu, Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and tumor embolotherapy, Small 16(2) (2020) e1903421. https://doi.org/10.1002/smll.201903421.
[87] X. Li, X. Ji, K. Chen, M.W. Ullah, X. Yuan, Z. Lei, J. Cao, J. Xiao, G. Yang, Development of finasteride/phbv@polyvinyl alcohol/chitosan reservoir-type microspheres as a potential embolic agent: From in vitro evaluation to animal study, Biomater. Sci. 8(10) (2020) 2797-2813. https://doi.org/10.1039/c9bm01775e.
[88] W. Nichols, M. O’Rourke, V. C, Properties of the arterial wall: Practice, in: W. Nichols, M. O’Rourke, V. C (Eds.), Mcdonald’s blood flow in arteries theoretical, experimental and clinical principles, CRC Press, London, UK, 2011, pp. 77-109.
[89] T.P. Santisakultarm, C.J. Kersbergen, D.K. Bandy, D.C. Ide, S.H. Choi, A.C. Silva, Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets, J Neurosci Methods 271 (2016) 55-64. https://doi.org/10.1016/j.jneumeth.2016.07.003.
[90] A.K. Gamperl, T.W. Hein, L. Kuo, B.A. Cason, Isoflurane-induced dilation of porcine coronary microvessels is endothelium dependent and inhibited by glibenclamide, Journal of the American Society of Anesthesiologists 96(6) (2002) 1465-1471. https://doi.org/10.1097/00000542-200206000-00028.
[91] H.A. Van Den Brenk, R.D. Chambers, Effects of anaesthetic agents and relaxants on vascular tone studies in sandison clark chambers, Br J Anaesth 28(3) (1956) 98-112. https://doi.org/10.1093/bja/28.3.98.
[92] M. Buscema, S.E. Hieber, G. Schulz, H. Deyhle, A. Hipp, F. Beckmann, J.A. Lobrinus, T. Saxer, B. Muller, Ex vivo evaluation of an atherosclerotic human coronary artery via histology and high-resolution hard x-ray tomography, Sci Rep 9(1) (2019) 14348. https://doi.org/10.1038/s41598-019-50711-1.
[93] M. Cooley, A. Sarode, M. Hoore, D.A. Fedosov, S. Mitragotri, A. Sen Gupta, Influence of particle size and shape on their margination and wall-adhesion: Implications in drug delivery vehicle design across nano-to-micro scale, Nanoscale 10(32) (2018) 15350-15364. https://doi.org/10.1039/c8nr04042g.
[94] A. Da Silva-Candal, T. Brown, V. Krishnan, I. Lopez-Loureiro, P. Avila-Gomez, A. Pusuluri, A. Perez-Diaz, C. Correa-Paz, P. Hervella, J. Castillo, S. Mitragotri, F. Campos, Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions, J. Control. Release 309 (2019) 94-105. https://doi.org/10.1016/j.jconrel.2019.07.026.
[95] R. Gupta, Y. Badhe, S. Mitragotri, B. Rai, Permeation of nanoparticles across the intestinal lipid membrane: Dependence on shape and surface chemistry studied through molecular simulations, Nanoscale 12(11) (2020) 6318-6333. https://doi.org/10.1039/c9nr09947f.
[96] P.A. James, S. Oparil, B.L. Carter, W.C. Cushman, C. Dennison-Himmelfarb, J. Handler, D.T. Lackland, M.L. LeFevre, T.D. MacKenzie, O. Ogedegbe, S.C. Smith, Jr., L.P. Svetkey, S.J. Taler, R.R. Townsend, J.T. Wright, Jr., A.S. Narva, E. Ortiz, 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the eighth joint national committee (jnc 8), JAMA 311(5) (2014) 507-520. https://doi.org/10.1001/jama.2013.284427.
[97] K. Varghese, S. Adhyapak, Therapeutic embolization, Springer International Publishing, Switzerland, 2017.
[98] M. Caine, D. Carugo, X. Zhang, M. Hill, M.R. Dreher, A.L. Lewis, Review of the development of methods for characterization of microspheres for use in embolotherapy: Translating bench to cathlab, Adv. Healthcare Mater. 6(9) (2017) 1601291. https://doi.org/10.1002/adhm.201601291.
修改评论