中文版 | English
题名

A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation

作者
通讯作者Jiang, Hongyang
发表日期
2023-09-04
DOI
发表期刊
ISSN
2234-943X
卷号13
摘要
IntroductionAccurate white blood cells segmentation from cytopathological images is crucial for evaluating leukemia. However, segmentation is difficult in clinical practice. Given the very large numbers of cytopathological images to be processed, diagnosis becomes cumbersome and time consuming, and diagnostic accuracy is also closely related to experts' experience, fatigue and mood and so on. Besides, fully automatic white blood cells segmentation is challenging for several reasons. There exists cell deformation, blurred cell boundaries, and cell color differences, cells overlapping or adhesion.MethodsThe proposed method improves the feature representation capability of the network while reducing parameters and computational redundancy by utilizing the feature reuse of Ghost module to reconstruct a lightweight backbone network. Additionally, a dual-stream feature fusion network (DFFN) based on the feature pyramid network is designed to enhance detailed information acquisition. Furthermore, a dual-domain attention module (DDAM) is developed to extract global features from both frequency and spatial domains simultaneously, resulting in better cell segmentation performance.ResultsExperimental results on ALL-IDB and BCCD datasets demonstrate that our method outperforms existing instance segmentation networks such as Mask R-CNN, PointRend, MS R-CNN, SOLOv2, and YOLACT with an average precision (AP) of 87.41%, while significantly reducing parameters and computational cost.DiscussionOur method is significantly better than the current state-of-the-art single-stage methods in terms of both the number of parameters and FLOPs, and our method has the best performance among all compared methods. However, the performance of our method is still lower than the two-stage instance segmentation algorithms. in future work, how to design a more lightweight network model while ensuring a good accuracy will become an important problem.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Department of education in Liaoning Province China[LJKMZ20221811] ; Doctoral Scientific Research Foundation of Anshan Normal University[22b08] ; 14th Five-Year Plan Special Research Project of Anshan Normal University[sszx013]
WOS研究方向
Oncology
WOS类目
Oncology
WOS记录号
WOS:001066944600001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/571888
专题工学院_计算机科学与工程系
作者单位
1.Anshan Normal Univ, Sch Math & Informat Sci, Anshan, Liaoning, Peoples R China
2.Anshan Normal Univ, Sch Appl Technol, Anshan, Liaoning, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
4.Northeastern Univ, Sch Comp Sci & Engn, Shenyang, Peoples R China
5.Minist Educ, Engn Res Ctr Secur Technol Complex Network Syst, Shenyang, Peoples R China
6.Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Luo, Yang,Wang, Yingwei,Zhao, Yongda,et al. A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation[J]. FRONTIERS IN ONCOLOGY,2023,13.
APA
Luo, Yang.,Wang, Yingwei.,Zhao, Yongda.,Guan, Wei.,Shi, Hanfeng.,...&Jiang, Hongyang.(2023).A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation.FRONTIERS IN ONCOLOGY,13.
MLA
Luo, Yang,et al."A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation".FRONTIERS IN ONCOLOGY 13(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo, Yang]的文章
[Wang, Yingwei]的文章
[Zhao, Yongda]的文章
百度学术
百度学术中相似的文章
[Luo, Yang]的文章
[Wang, Yingwei]的文章
[Zhao, Yongda]的文章
必应学术
必应学术中相似的文章
[Luo, Yang]的文章
[Wang, Yingwei]的文章
[Zhao, Yongda]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。