[1] TOLLEFSON J. Climate change is hitting the planet faster than scientistsoriginally thought[J]. Nature, 2022.
[2] CARNICER J, ALEGRIA A, GIANNAKOPOULOS C, et al. Global warmingis shifting the relationships between fire weather and realized fire-inducedCO2 emissions in Europe[J]. Scientific Reports, 2022, 12(1): 10365.
[3] FIGUEIREDO J, THOMAS C J, DELEERSNIJDER E, et al. Global warmingdecreases connectivity among coral populations[J]. Nature Climate Change,2022, 12(1): 83-87.
[4] BARBAROSSA V, BOSMANS J, WANDERS N, et al. Threats of globalwarming to the world’s freshwater fishes[J]. Nature Communications, 2021,12(1): 1701.
[5] Paris Agreement. United Nations Framework Convention on Climate Change(UNFCCC)[J]. Climate Change Secretariat: Bonn, Germany, 2015.
[6] SCHLEUSSNER C-F, LISSNER T K, FISCHER E M, et al. Differentialclimate impacts for policy-relevant limits to global warming: the case of1.5°C and 2°C[J]. Earth System Dynamics, Copernicus GmbH, 2016, 7(2):327–351.
[7] RUSSO S, SILLMANN J, STERL A. Humid heat waves at different warminglevels[J]. Scientific Reports, 2017, 7(1): 7477.
[8] Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C [R].World Meteorological Organization, 2018.
[9] MENG Y, LIU J G, WANG Z F, et al. Undermined co-benefits of hydropowerand irrigation under climate change[J]. Resources, Conservation andRecycling, 2021, 167: 105375.
[10] LI Y, TAO H, SU B D, et al. Impacts of 1.5 °C and 2 °C global warming onwinter snow depth in Central Asia[J]. Science of The Total Environment,2019, 651: 2866-2873.
[11] ROGELJ J, LUDERER G, PIETZCKER R C, et al. Energy systemtransformations for limiting end-of-century warming to below 1.5 °C[J].Nature Climate Change, 2015, 5(6): 519-527.
[12] PARK C-E, JEONG S-J, JOSHI M, et al. Keeping global warming within1.5 °C constrains emergence of aridification[J]. Nature Climate Change,2018, 8(1): 70-74.
[13] ZHANG Z E, PAN S-Y, LI H, et al. Recent advances in carbon dioxideutilization[J]. Renewable and Sustainable Energy Reviews, 2020, 125:109799.
[14] BELBUTE J M, PEREIRA A M. Reference forecasts for CO2 emissions fromfossil-fuel combustion and cement production in Portugal[J]. Energy Policy,2020, 144: 111642.
[15] LE QUÉRÉ C, JACKSON R B, JONES M W, et al. Temporary reduction indaily global CO2 emissions during the COVID-19 forced confinement[J].Nature Climate Change, 2020, 10(7): 647-653.
[16] VARGAS C A, CUEVAS L A, BROITMAN B R, et al. Upper environmentalpCO2 drives sensitivity to ocean acidification in marine invertebrates[J].Nature Climate Change, 2022, 12(2): 200-207.
[17] SINGH A, ABBHISHEK K, KUTTIPPURATH J, et al. Decadal variations inCO2 during agricultural seasons in India and role of management assustainable approach[J]. Environmental Technology & Innovation, 2022, 27:102498.
[18] 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(04): 423-434.
[19] IYER G, LEDNA C, CLARKE L, et al. Measuring progress from nationallydetermined contributions to mid-century strategies[J]. Nature ClimateChange, 2017, 7(12): 871-874.
[20] WOLF S, TEITGE J, MIELKE J, et al. The European Green Deal—MoreThan Climate Neutrality[J]. Intereconomics, 2021, 56(2): 99-107.
[21] KOUGIAS I, TAYLOR N, KAKOULAKI G, et al. The role of photovoltaicsfor the European Green Deal and the recovery plan[J]. Renewable andSustainable Energy Reviews, 2021, 144: 111017.
[22] ROGELJ J, GEDEN O, COWIE A, et al. Net-zero emissions targets are vague:three ways to fix[J]. Nature, 2021, 591(7850): 365-368.
[23] WELSBY D, PRICE J, PYE S, et al. Unextractable fossil fuels in a 1.5 °Cworld[J]. Nature, 2021, 597(7875): 230-234.
[24] MIKULČIĆ H, RIDJAN SKOV I, DOMINKOVIĆ D F, et al. Flexible CarbonCapture and Utilization technologies in future energy systems and theutilization pathways of captured CO2[J]. Renewable and SustainableEnergy Reviews, 2019, 114: 109338.
[25] DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energysystems[J]. Science, American Association for the Advancement of Science,2018, 360(6396): 9793.
[26] OWUSU P A, ASUMADU-SARKODIE S. A review of renewable energysources, sustainability issues and climate change mitigation[J]. Dubey S.Cogent Engineering, Cogent OA, 2016, 3(1): 1167990.
[27] MENG Y, LIU J G, LEDUC S, et al. Hydropower Production Benefits MoreFrom 1.5 °C than 2 °C Climate Scenario[J]. Water Resources Research,2020, 56(5): e2019WR025519.
[28] MORAN E F, LOPEZ M C, MOORE N, et al. Sustainable hydropower in the21st century[J]. Proceedings of the National Academy of Sciences,Proceedings of the National Academy of Sciences, 2018, 115(47): 11891-11898.
[29] ZARFL C, BERLEKAMP J, HE F, et al. Future large hydropower damsimpact global freshwater megafauna[J]. Scientific Reports, 2019, 9(1):18531.
[30] World Energy Council. World Energy Resources 2016[J]. World EnergyResources 2016, 2016: 1-33.
[31] YÜKSEL I. Hydropower for sustainable water and energy development[J] .Renewable and Sustainable Energy Reviews, 2010, 14(1): 462-469.
[32] HUNT J D, BYERS E, WADA Y, et al. Global resource potential of seasonalpumped hydropower storage for energy and water storage[J]. NatureCommunications, 2020, 11(1): 947.
[33] REHMAN S, AL-HADHRAMI L M, ALAM MD M. Pumped hydro energystorage system: A technological review[J]. Renewable and SustainableEnergy Reviews, 2015, 44: 586-598.
[34] ADI A, LASNAWATIN F, PRANANTO A, et al. Handbook of Energy andEconomic Statistics of Indonesia 2018[J]. Ministry of Energy and MineralResources Republic of Indonesia, 2019.
[35] HAKAM D F, ARIF L, FAHRUDIN T. Sustainable energy production inSumatra power system[C]//2012 International Conference on PowerEngineering and Renewable Energy (ICPERE), 2012: 1-4.
[36] SILALAHI D F, BLAKERS A, STOCKS M, et al. Indonesia’s Vast SolarEnergy Potential[J]. Energies, 2021, 14(17): 5424.
[37] TURNBAUGH P J, LEY R E, HAMADY M, et al. The Human MicrobiomeProject[J]. Nature, 2007, 449(7164): 804-810.
[38] LI G D, FANG C L, LI Y J, et al. Global impacts of future urban expansionon terrestrial vertebrate diversity[J]. Nature Communications, 2022, 13(1):1628.
[39] PEÑUELAS J, SARDANS J. The global nitrogen-phosphorus imbalance[J].Science, American Association for the Advancement of Science, 2022,375(6578): 266-267.
[40] NEWBOLD T, HUDSON L N, HILL S L L, et al. Global effects of land useon local terrestrial biodiversity[J]. Nature, 2015, 520(7545): 45-50.
[41] SONG X-P, HANSEN M C, STEHMAN S V, et al. Global land change from1982 to 2016[J]. Nature, 2018, 560(7720): 639-643.
[42] IEA. Global Energy Review 2021[R]. Paris: 2021.
[43] IHA. Hydropower status report[R]. London, UK: 2019.
[44] IHA. Hydropower status report[R]. London, UK: 2020.
[45] IEA. Global Energy Review 2020[R]. Paris: 2020.
[46] JURASZ J, MIKULIK J, KRZYWDA M, et al. Integrating a wind- and solarpowered hybrid to the power system by coupling it with a hydroelectricpower station with pumping installation[J]. Energy, 2018, 144: 549-563.
[47] WANG X, VIRGUEZ E, KERN J, et al. Integrating wind, photovoltaic, andlarge hydropower during the reservoir refilling period[J]. EnergyConversion and Management, 2019, 198: 111778.
[48] 张良静, 侯学良. 基于熵-TOPSIS 法的水电站坝址选择模型研究[D]. 华北电力大学(北京), 2020.
[49] ZHOU Y, HEJAZI M, SMITH S, et al. A comprehensive view of globalpotential for hydro-generated electricity[J]. Energy & EnvironmentalScience, The Royal Society of Chemistry, 2015, 8(9): 2622-2633.
[50] TEFERA W M, KASIVISWANATHAN K S. A global-scale hydropowerpotential assessment and feasibility evaluations[J]. Water Resources andEconomics, 2022, 38: 100198.
[51] EDENHOFER O, PICHS-MADRUGA R, SOKONA Y, et al. Renewableenergy sources and climate change mitigation: Special report of theintergovernmental panel on climate change[M]. Cambridge University Press,2011.
[52] EDMONDS J, CLARKE J, DOOLEY J, et al. Stabilization of CO2 in a B2world: insights on the roles of carbon capture and disposal, hydrogen, andtransportation technologies[J]. Energy Economics, 2004, 26(4): 517-537.
[53] ZHOU Y, CLARKE L, EOM J, et al. Modeling the effect of climate changeon U.S. state-level buildings energy demands in an integrated assessmentframework[J]. Applied Energy, 2014, 113: 1077-1088.
[54] KUSRE B C, BARUAH D C, BORDOLOI P K, et al. Assessment ofhydropower potential using GIS and hydrological modeling technique inKopili River basin in Assam (India)[J]. Applied Energy, 2010, 87(1): 298-309.
[55] LIU W, LUND H, MATHIESEN B V, et al. Potential of renewable energysystems in China[J]. Applied Energy, 2011, 88(2): 518-525.
[56] KOÇ C. A study on the development of hydropower potential in Turkey[J].Renewable and Sustainable Energy Reviews, 2014, 39: 498-508.
[57] GERNAAT D E, BOGAART P W, VUUREN D P VAN, et al. High-resolutionassessment of global technical and economic hydropower potential[J].Nature Energy, 2017, 2(10): 821-828.
[58] PALOMINO CUYA D G, BRANDIMARTE L, POPESCU I, et al. A GISbased assessment of maximum potential hydropower production in La Platabasin under global changes[J]. Renewable Energy, 2013, 50: 103-114.
[59] XU R R, ZENG Z Z, PAN M, et al. A global-scale framework for hydropowerdevelopment incorporating strict environmental constraints[J]. NatureWater, 2023, 1(1): 113-122.
[60] LEHNER B, CZISCH G, VASSOLO S. The impact of global change on thehydropower potential of Europe: a model-based analysis[J]. Energy Policy,2005, 33(7): 839-855.
[61] HAYASHI T, YOSHINO F, WAKA R. Optimal sequencing site of hydropower stations[J]. Journal of Energy Resources Technology, 1995,.117(2):125-132.
[62] ROMANELLI J P, SILVA L G, HORTA A, et al. Site selection for hydropowerdevelopment: a GIS-based framework to improve planning in Brazil[J].Journal of Environmental Engineering, 2018, 144(7): 04018051.
[63] MANIS L. GIS-based mapping potential sites for micro-hydro power plantsin West Sumatera[C]//IEEE International Conference on InnovativeResearch and Development (ICIRD). IEEE, 2018: 1-4.
[64] REN F. Site Selection Optimization for Thermal Power Plant Based on RoughSet and Multi-Objective Programming[C]//Advanced Materials Research.Trans Tech Publications, 2014, 960: 1501-1507.
[65] YASSER M, JAHANGIR K, MOHMMAD A. Earth dam site selection usingthe analytic hierarchy process (AHP): a case study in the west of Iran[J].Arabian Journal of Geosciences, 2013, 6(9): 3417-3426.
[66] TORABI-KAVEH M, BABAZADEH R, MOHAMMADI S, et al. Landfill siteselection using combination of GIS and fuzzy AHP, a case study: Iranshahr,Iran[J]. Waste Management & Research, SAGE Publications Sage UK:London, England, 2016, 34(5): 438-448.
[67] PARK J-B, LEE K-S, SHIN J-R, ET AL. Economic load dispatch fornonsmooth cost functions using particle swarm optimization [C]//2003IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491). IEEE, 2003, 2: 938-943.
[68] NAMANY S, AL-ANSARI T, GOVINDAN R. Sustainable energy, water andfood nexus systems: A focused review of decision-making tools for efficientresource management and governance[J]. Journal of Cleaner Production,2019, 225: 610-626.
[69] RINGKJØB H-K, HAUGAN P M, SOLBREKKE I M. A review of modellingtools for energy and electricity systems with large shares of variablerenewables[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 440-459.
[70] SAVVIDIS G, SIALA K, WEISSBART C, et al. The gap between energypolicy challenges and model capabilities[J]. Energy Policy, 2019, 125: 503-520.
[71] DAGOUMAS A S, KOLTSAKLIS N E. Review of models for integratingrenewable energy in the generation expansion planning[J]. Applied E nergy,2019, 242: 1573-1587.
[72] LEE H-K, LEE I-B, REKLAITIS G V. Capacity expansion problem ofmultisite batch plants with production and distribution[J]. Computers &Chemical Engineering, 2000, 24(2): 1597-1602.
[73] LUSS H. A capacity-expansion model for two facility types[J]. NavalResearch Logistics Quarterly, 1979, 26(2): 291-303.
[74] COHEN S M, BECKER J, BIELEN D A, et al. Regional Energy DeploymentSystem (ReEDS) Model Documentation: Version 2018[J]. 2019.
[75] HOWELLS M, ROGNER H, STRACHAN N, et al. OSeMOSYS: The OpenSource Energy Modeling System: An introduction to its ethos, structure anddevelopment[J]. Energy Policy, 2011, 39(10): 5850-5870.
[76] AHMAD S, MAT TAHAR R, MUHAMMAD-SUKKI F, et al. Application ofsystem dynamics approach in electricity sector modelling: A review[J].Renewable and Sustainable Energy Reviews, 2016, 56: 29-37.
[77] TEMRAZ H K, SALAMA M M A. A planning model for siting, sizing andtiming of distribution substations and defining the associated service area[J].Electric Power Systems Research, 2002, 62(2): 145-151.
[78] ARNELL N W, GOSLING S N. The impacts of climate change on river flowregimes at the global scale[J]. Journal of Hydrology, 2013, 486: 351-364.
[79] ZENG R, CAI X, RINGLER C, et al. Hydropower versus irrigation—ananalysis of global patterns[J]. Environmental Research Letters, 2017, 12(3):034006.
[80] BARNETT T P, ADAM J C, LETTENMAIER D P. Potential impacts of awarming climate on water availability in snow-dominated regions[J].Nature, 2005, 438(7066): 303-309.
[81] HAMUDUDU B, KILLINGTVEIT A. Assessing Climate Change Impacts onGlobal Hydropower[J]. Energies, Molecular Diversity PreservationInternational, 2012, 5(2): 305-322.
[82] REYER C P O, OTTO I M, ADAMS S, et al. Climate change impacts inCentral Asia and their implications for development[J]. RegionalEnvironmental Change, 2017, 17(6): 1639-1650.
[83] MINVILLE M, BRISSETTE F, KRAU S, et al. Adaptation to Climate Changein the Management of a Canadian Water-Resources System Exploited forHydropower[J]. Water Resources Management, 2009, 23(14): 2965-2986.
[84] JÚNIOR J L S, TOMASELLA J, RODRIGUEZ D A. Impacts of futureclimatic and land cover changes on the hydrological regime of the MadeiraRiver basin[J]. Climatic Change, 2015, 129(1): 117-129.
[85] VAN VLIET M T, WIBERG D, LEDUC S, et al. Power-generation systemvulnerability and adaptation to changes in climate and water resources[J].Nature Climate Change, 2016, 6(4): 375-380.
[86] TARIKU T B, GAN K E, TAN X, et al. Global warming impact to River Basinof Blue Nile and the optimum operation of its multi-reservoir system forhydropower production and irrigation[J]. Science of The Total Environment,2021, 767: 144863.
[87] FAN J-L, HU J-W, ZHANG X, et al. Impacts of climate change onhydropower generation in China[J]. Mathematics and Computers inSimulation, 2020, 167: 4-18.
[88] TOBIN I, GREUELL W, JEREZ S, et al. Vulnerabilities and resilience ofEuropean power generation to 1.5°C, 2°C and 3°C warming[J].Environmental Research Letters, 2018, 13(4): 044024.
[89] TATAR S M, AKULKER H, SILDIR H, et al. Optimal design and operationof integrated microgrids under intermittent renewable energy sourcescoupled with green hydrogen and demand scenarios[J]. InternationalJournal of Hydrogen Energy, 2022, 47(65): 27848-27865.
[90] KALDELLIS J, KAVADIAS K, FILIOS A. A new computational algorithmfor the calculation of maximum wind energy penetration in autonomouselectrical generation systems[J]. Applied Energy, 2009, 86(7-8): 1011-1023.
[91] KATSAPRAKAKIS D A, PAPADAKIS N, CHRISTAKIS D G, et al. On thewind power rejection in the islands of Crete and Rhodes[J]. Wind Energy,2007, 10(5): 415-434.
[92] YANG C-J, JACKSON R B. Opportunities and barriers to pumped-hydroenergy storage in the United States[J]. Renewable and Sustainable EnergyReviews, 2011, 15(1): 839-844.
[93] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题[J]. 南方能源建设, 2019, 6(3): 5.
[94] IHA. Hydropower Status Report [R].2022.
[95] 胡泽春, 丁华杰, 孔涛. 风电—抽水蓄能联合日运行优化调度模型[J]. 电力系统自动化, 2012, 36(02): 36-41.
[96] LUO X, WANG J, DOONER M, et al. Overview of current development inelectrical energy storage technologies and the application potential in powersystem operation[J]. Applied Energy, 2015, 137: 511-536.
[97] KEAR G, CHAPMAN R. ‘Reserving judgement’: Perceptions of pumpedhydro and utility-scale batteries for electricity storage and reservegeneration in New Zealand[J]. Renewable energy, 2013, 57: 249-261.
[98] 张晓利. 抽水蓄能电站渣场布置及防护研究[D].西北农林科技大学, 2014.
[99] PAPAEFTHIMIOU S, KARAMANOU E, PAPATHANASSIOU S, et al.Operating policies for wind-pumped storage hybrid power stations in islandgrids[J]. IET Renewable Power Generation, 2009, 3(3): 293-307.
[100] PAPAEFTHYMIOU S V, KARAMANOU E G, PAPATHANASSIOU S A, etal. A wind-hydro-pumped storage station leading to high RES penetrationin the autonomous island system of Ikaria[J]. IEEE Transactions onsustainable energy, 2010, 1(3): 163-172.
[101] PAPAEFTHYMIOU S V, PAPATHANASSIOU S A, KARAMANOU E G.Application of Pumped Storage to Increase Renewable Energy Penetrationin Autonomous Island Systems [G]//Muyeen S M.Wind Energy ConversionSystems: Technology and Trends. London: Springer, 2012: 295-335.
[102] DINGLIN L, YINGJIE C, KUN Z, et al. Economic evaluation of windpowered pumped storage system[J]. Systems Engineering Procedia, 2012, 4:107-115.
[103] REUTER W H, FUSS S, SZOLGAYOVÁ J, et al. Investment in wind powerand pumped storage in a real options model[J]. Renewable and SustainableEnergy Reviews, 2012, 16(4): 2242-2248.
[104] BAYÓN L, GRAU J M, RUIZ M M, et al. Mathematical modelling of thecombined optimization of a pumped-storage hydro-plant and a wind park[J].Mathematical and Computer Modelling, 2013, 57(7): 2024-2028.
[105] ARNAOUTAKIS G E, KEFALA G, DAKANALI E, et al. CombinedOperation of Wind-Pumped Hydro Storage Plant with a Concentrating SolarPower Plant for Insular Systems: A Case Study for the Island of Rhodes[J].Energies, 2022, 15(18): 6822.
[106] PSARROS G N, PAPATHANASSIOU S A. Internal dispatch for RESstorage hybrid power stations in isolated grids[J]. Renewable Energy, 2020,147: 2141-2150.
[107] BUENO C, CARTA J A. Wind powered pumped hydro storage systems, ameans of increasing the penetration of renewable energy in the CanaryIslands[J]. Renewable and Sustainable Energy Reviews, 2006, 10(4): 312-340.
[108] MCDOWALL J. Integrating energy storage with wind power in weakelectricity grids[J]. Journal of Power Sources, 2006, 162(2): 959-964.
[109] KALDELLIS J K, ZAFIRAKIS D, KAVADIAS K. Techno-economiccomparison of energy storage systems for island autonomous electricalnetworks[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 378-392.
[110] HAAS J, PRIETO-MIRANDA L, GHORBANI N, et al. Revisiting thepotential of pumped-hydro energy storage: A method to detect economicallyattractive sites[J]. Renewable Energy, 2022, 181: 182-193.
[111] ZHENG Y, SAHRAEI-ARDAKANI M. Leveraging existing water andwastewater infrastructure to develop distributed pumped storagehydropower in California[J]. Journal of Energy Storage, 2021, 34: 102204.
[112] CONNOLLY D, MACLAUGHLIN S, LEAHY M. Development of acomputer program to locate potential sites for pumped hydroelectric energystorage[J]. Energy, 2010, 35(1): 375-381.
[113] FITZGERALD N, LACAL ARÁNTEGUI R, MCKEOGH E, et al. A GISbased model to calculate the potential for transforming conventionalhydropower schemes and non-hydro reservoirs to pumped hydropowerschemes[J]. Energy, 2012, 41(1): 483-490.
[114] KUCUKALI S. Finding the most suitable existing hydropower reservoirsfor the development of pumped-storage schemes: An integrated approach[J].Renewable and Sustainable Energy Reviews, 2014, 37: 502-508.
[115] GIMENO-GUTIÉRREZ M, LACAL-ARÁNTEGUI R. Assessment of theEuropean potential for pumped hydropower energy storage based on twoexisting reservoirs[J]. Renewable Energy, 2015, 75: 856-868.
[116] JIMÉNEZ CAPILLA J A, CARRIÓN J A, ALAMEDA-HERNANDEZ E.Optimal site selection for upper reservoirs in pump-back systems, usinggeographical information systems and multicriteria analysis[J]. RenewableEnergy, 2016, 86: 429-440.
[117] LU X, WANG S. A GIS-based assessment of Tibet’s potential for pumpedhydropower energy storage[J]. Renewable and Sustainable Energy Reviews,2017, 69: 1045-1054.
[118] ROGEAU A, GIRARD R, KARINIOTAKIS G. A generic GIS-based methodfor small Pumped Hydro Energy Storage (PHES) potential evaluation atlarge scale[J]. Applied Energy, 2017, 197: 241-253.
[119] QIU L, HE L, LU H, et al. Pumped hydropower storage potential and itscontribution to hybrid renewable energy co-development: A case study inthe Qinghai-Tibet Plateau[J]. Journal of Energy Storage, 2022, 51: 104447.
[120] BRUNETTA G, CALDARICE O. Planning for Climate Change: AdaptationActions and Future Challenges in the Italian Cities [C]//Calabrò F, DellaSpina L, Bevilacqua C.New Metropolitan Perspectives. Cham: SpringerInternational Publishing, 2019: 609-613.
[121] FRAGA H. Climate Change: A New Challenge for the WinemakingSector[J]. Agronomy,2020, 10(10): 1465.
[122] LI Z Y, FANG H Y. Impacts of climate change on water erosion: A review[J].Earth-Science Reviews, 2016, 163: 94-117.
[123] 刘俊国, 孟莹, 张学静. IPCC AR6 报告解读:地下水[J]. 气候变化研究进展, 2022, 18(4): 414.
[124] VAN VLIET M T H, VAN BEEK L P H, EISNER S, et al. Multi-modelassessment of global hydropower and cooling water discharge potentialunder climate change[J]. Global Environmental Change, 2016, 40: 156-170.
[125] ZHANG X, LI H-Y, DENG Z D, et al. Impacts of climate change, policyand Water-Energy-Food nexus on hydropower development[J]. RenewableEnergy, 2018, 116: 827-834.
[126] ROUNCE D R, HOCK R, MAUSSION F, et al. Global glacier change in the21st century: Every increase in temperature matters[J]. Science, AmericanAssociation for the Advancement of Science, 2023, 379(6627): 78-83.
[127] TEDSTONE A J, MACHGUTH H. Increasing surface runoff fromGreenland’s firn areas[J]. Nature Climate Change, 2022, 12(7): 672-676.
[128] VUILLE M, CAREY M, HUGGEL C, et al. Rapid decline of snow and icein the tropical Andes-Impacts, uncertainties, and challenges ahead[J]. EarthScience Reviews, 2018, 176: 195-213.
[129] WINKLER M, JUEN I, MÖLG T, et al. Measured and modelled sublimationon the tropical Glaciar Artesonraju, Perú[J]. The Cryosphere, 2009, 3(1):21-30.
[130] MACDONALD M K, POMEROY J W, PIETRONIRO A. On the importanceof sublimation to an alpine snow mass balance in the Canadian RockyMountains[J]. Hydrology and Earth System Sciences, 2010, 14(7): 1401-1415.
[131] STIGTER E, LITT M, STEINER J F, et al. The Importance of SnowSublimation on a Himalayan Glacier[J]. Frontiers in Earth Science, 2018, 6.
[132] VIONNET V, MARTIN E, MASSON V, et al. Simulation of wind-inducedsnow transport and sublimation in alpine terrain using a fully coupledsnowpack/atmosphere model[J]. The Cryosphere, 2014, 8(2): 395-415.
[133] ZHANG Y, PEÑA-ARANCIBIA J L, MCVICAR T R, et al. Multi-decadaltrends in global terrestrial evapotranspiration and its components[J].Scientific Reports, 2016, 6(1): 19124.
[134] FLÖRKE M, SCHNEIDER C, MCDONALD R I. Water competitionbetween cities and agriculture driven by climate change and urban growth[J].Nature Sustainability, 2018, 1(1): 51-58.
[135] BIJL D L, BIEMANS H, BOGAART P W, et al. A Global Analysis of FutureWater Deficit Based on Different Allocation Mechanisms[J]. WaterResources Research, 2018, 54(8): 5803-5824.
[136] IEA. Hydropower[M]. OECD, 2012.
[137] GAUDARD L, ROMERIO F. Reprint of “The future of hydropower inEurope: Interconnecting climate, markets and policies”[J]. EnvironmentalScience & Policy, 2014, 43: 5-14.
[138] RAADAL H L, GAGNON L, MODAHL I S, et al. Life cycle greenhousegas (GHG) emissions from the generation of wind and hydro power[J].Renewable and Sustainable Energy Reviews, 2011, 15(7): 3417-3422.
[139] STERNBERG R. Hydropower’s future, the environment, and globalelectricity systems[J]. Renewable and Sustainable Energy Reviews, 2010,14(2): 713-723.
[140] BERGA L. The Role of Hydropower in Climate Change Mitigation andAdaptation: A Review[J]. Engineering, 2016, 2(3): 313-318.
[141] COUNCIL W E. Comparison of Energy Systems Using Life CycleAssessment: A Special Report of the World Energy Council[M]. WorldEnergy Council, 2004.
[142] 郑璀莹, 周虹, 付湘宁. 水电在适应与减缓气候变化影响中的作用[J]. 水利水电快报, 2014, 35(07): 4-6.
[143] BLAKERS A, STOCKS M, LU B, et al. A review of pumped hydro energystorage[J]. Progress in Energy, 2021, 3(2): 022003.
[144] HUNT J D, ZAKERI B, LOPES R, et al. Existing and new arrangements ofpumped-hydro storage plants[J]. Renewable and Sustainable EnergyReviews, 2020, 129: 109914.
[145] JAVED M S, MA T, JURASZ J, et al. Solar and wind power generationsystems with pumped hydro storage: Review and future perspectives[J].Renewable Energy, 2020, 148: 176-192.
[146] WANG F, LANG Y, LIU C-Q, et al. Flux of organic carbon burial and carbonemission from a large reservoir: implications for the cleanliness assessmentof hydropower[J]. Science Bulletin, 2019, 64(9): 603-611.
[147] LI Y, KASAHARA T, CHIWA M, et al. Effects of dams and reservoirs onorganic matter decomposition in forested mountain streams in westernJapan[J]. River Research and Applications, 2020, 36(7): 1257-1266.
[148] FONSECA A L DOS S, BIANCHINI JR I, PIMENTA C M M, et al. Theeffect of hydrostatic pressure on the decomposition of inundated terrestrialplant detritus of different quality in simulated reservoir formation[J]. Lakes& Reservoirs: Science, Policy and Management for Sustainable Use, 2016,21(3): 216-223.
[149] GUNKEL G. Hydropower - A Green Energy? Tropical Reservoirs andGreenhouse Gas Emissions[J]. CLEAN-Soil, Air, Water, 2009, 37(9): 726-734.
[150] UBIERNA M, SANTOS C D, MERCIER-BLAIS S. Water Security andClimate Change: Hydropower Reservoir Greenhouse Gas Emissions[G]//Biswas A K, Tortajada C.Water Security Under Climate Change.Singapore: Springer, 2022: 69-94.
[151] ABRIL G, BORGES A V. Ideas and perspectives: Carbon leaks from floodedland: do we need to replumb the inland water active pipe?[J].Biogeosciences, Copernicus GmbH, 2019, 16(3): 769-784.
[152] SHAKOOR A, ASHRAF F, SHAKOOR S, et al. Biogeochemicaltransformation of greenhouse gas emissions from terrestrial to atmosphericenvironment and potential feedback to climate forcing[J]. EnvironmentalScience and Pollution Research, 2020, 27(31): 38513-38536.
[153] YANG P, FONG D A, LO E Y-M, et al. Vertical mixing in a shallow tropicalreservoir[J]. Limnology, 2019, 20(3): 279-296.
[154] YU Z, WANG L. Factors influencing thermal structure in a tributary bay ofThree Gorges Reservoir[J]. Journal of Hydrodynamics, 2011, 23(4): 407-415.
[155] STUIVER M. Atmospheric Carbon Dioxide and Carbon ReservoirChanges[J]. Science, 1978, 199(4326): 253-258.
[156] MÄKINEN K, KHAN S. Policy Considerations for Greenhouse GasEmissions from Freshwater Reservoirs [J]. Water alternatives, 2010, 3(2).
[157] MATEAR R J, HIRST A C. Long-term changes in dissolved oxygenconcentrations in the ocean caused by protracted global warming[J]. GlobalBiogeochemical Cycles, 2003, 17(4):1-32.
[158] SAIAN P O N, PRATAMA R A, SUSETYO Y A. Sistem Informasi GeografisPotensi Sumber Daya Kelautan Berbasis Android[J]. Jurnal Transformatika,2021, 18(2): 187-198.
[159] 张兆吉, 雒国中, 王昭, 等. 华北平原地下水资源可持续利用研究[J]. 资源科学, 2009(3): 355-360.
[160] WINKEL L, BERG M, STENGEL C, et al. Hydrogeological surveyassessing arsenic and other groundwater contaminants in the lowlands ofSumatra, Indonesia[J]. Applied Geochemistry, 2008, 23(11): 3019-3028.
[161] SUPRIYADI S, HIDAYATI R, HIDAYAT R, et al. Mapping Extreme RainConditions in Sumatra by Influence Global Conditions[J]. IOP ConferenceSeries: Earth and Environmental Science, 2017, 58(1): 012041.
[162] SANI L, KHATIWADA D, HARAHAP F, et al. Decarbonization pathwaysfor the power sector in Sumatra, Indonesia[J]. Renewable and SustainableEnergy Reviews, 2021, 150: 111507.
[163] ARINALDO D, ADIATMA J C. Indonesia’s coal dynamics: toward a justenergy transition[R]. IESR report, 2019.
[164] ARINALDO D, ADIATMA J C, SIMAMORA P. Indonesia Clean EnergyOutlook Reviewing 2018, Outlooking 2019[R/OL]. Institute for EssentialService Reform.
[2022-10-10]. http://iesr. or. id/old/wp-content/uploads/Indonesia-Clean-Energy-Outlook-2019. pdf, 2018.
[165] LEGINO S, ARIANTO R, PASRA N. Indonesia Clean Energy Outlook:Tracking Progress and Review of Clean Energy Development inIndonesia[J]. Institute for Essential Services Reform (IESR), 2019.
[166] SIREGAR B D, SUDIARTO B, SETIABUDY R. Economic Analysis ofRenewable Energy Power Plant in Sumatra, Indonesia[C]//2019 IEEEInternational Conference on Innovative Research and Development(ICIRD).2019: 1-4.
[167] VELDHUIS A J, REINDERS A H M E. Reviewing the potential and costeffectiveness of grid-connected solar PV in Indonesia on a provinciallevel[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 315-324.
[168] VIDINOPOULOS A, WHALE J, FUENTES HUTFILTER U. Assessing thetechnical potential of ASEAN countries to achieve 100% renewable energysupply[J]. Sustainable Energy Technologies and Assessments, 2020, 42:100878.
[169] SILALAHI D F, BLAKERS A, LU B, et al. Indonesia’s Vast Off-RiverPumped Hydro Energy Storage Potential[J]. Energies, 2022, 15(9): 3457.
[170] BURKE P J, WIDNYANA J, ANJUM Z, et al. Overcoming barriers to solarand wind energy adoption in two Asian giants: India and Indonesia[J].Energy Policy, 2019, 132: 1216-1228.
[171] KEMENTERIAN E. Rencana umum ketenagalistrikan nasional 2019-2038[R]. Jakarta: Kementrian ESDM, 2019.
[172] TAMBUNAN H B, SURYA A S, JINTAKA D R, et al. Review ProsesPerencanaan Jangka Panjang Sistem Tenaga Listrik[J]. EPIC (Journal ofElectrical Power, Instrumentation and Control), 2021, 4(1).
[173] GREENE L A. Ehpnet: United Nations Framework Convention on ClimateChange[J].2000: A353-A353.
[174] UNFCCC. First nationally determined contribution republic of Indonesia:United Nations framework convention on climate change [R/OL]. (2016-07-12)
[2022-10-30]. http://www4.unfccc.int/ndcregistry/PublishedDocuments/Indonesia%20First/First%20NDC%20Indonesia_submitted%20to%20UNFCCC%20Set_November%20%202016.pdf.
[175] TACCONI L. Indonesia’s NDC bodes ill for the Paris Agreement[J]. NatureClimate Change, 2018, 8(10): 842-842.
[176] VAN B L P H, BIERKENS M F P. The Global Hydrological Model PCRGLOBWB: Conceptualization, Parameterization and Verification[R/OL].The Netherlands: Utrecht University, Utrecht, 2008,
[2020-10-1]http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf.
[177] TEBALDI C, KNUTTI R. The use of the multi-model ensemble inprobabilistic climate projections[J]. Philosophical Transactions of the RoyalSociety A: Mathematical, Physical and Engineering Sciences, Royal Society,2007, 365(1857): 2053-2075.
[178] HEMPEL S, FRIELER K, WARSZAWSKI L, et al. A trend-preserving biascorrection-the ISI-MIP approach[J]. Earth System Dynamics, 2013, 4(2):219-236.
[179] FRIELER K, LANGE S, PIONTEK F, et al. Assessing the impacts of 1.5 °Cglobal warming - simulation protocol of the Inter-Sectoral Impact ModelIntercomparison Project (ISIMIP2b)[J]. Geoscientific Model Development,Copernicus GmbH, 2017, 10(12): 4321-4345.
[180] FRICKO O, HAVLIK P, ROGELJ J, et al. The marker quantification of theShared Socioeconomic Pathway 2: A middle-of-the-road scenario for the21st century[J]. Global Environmental Change, 2017, 42: 251-267.
[181] SCHELLNHUBER H J, FRIELER K, KABAT P. The elephant, the blind,and the intersectoral intercomparison of climate impacts[J]. Proceedings ofthe National Academy of Sciences, Proceedings of the National Academy ofSciences, 2014, 111(9): 3225-3227.
[182] 胡婷, 孙颖, 张学斌. 全球 1.5 和 2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3098-3111.
[183] SHI C, JIANG Z-H, CHEN W-L, et al. Changes in temperature extremesover China under 1.5°C and 2°C global warming targets[J]. Advances inClimate Change Research, 2018, 9(2): 120-129.
[184] VAN VUUREN D P, EDMONDS J, KAINUMA M, et al. The representativeconcentration pathways: an overview[J]. Climatic Change, 2011, 109(1): 5.
[185] LEHNER B, VERDIN K, JARVIS A. New global hydrography derived fromspaceborne elevation data[J]. Eos, 2008, 89(10): 93-94.
[186] VERNON C R, ZULJEVIC N, RICE J S, et al. CERF - A Geospatial Modelfor Assessing Future Energy Production Technology ExpansionFeasibility[J]. Journal of Open Research Software, 2018, 6(1): 20.
[187] LEDUC S. Development of an optimization model for the location ofbiofuel production plants[D]. Luleå tekniska universitet, 2009.
[188] LEDUC S, SCHWAB D, DOTZAUER E, et al. Optimal location of woodgasification plants for methanol production with heat recovery[J].International Journal of Energy Research, 2008, 32(12): 1080-1091.
[189] LEDUC S, LUNDGREN J, FRANKLIN O, et al. Location of a biomassbased methanol production plant: A dynamic problem in northern Sweden[J].Applied Energy, 2010, 87(1): 68-75.
[190] MESFUN S, SANCHEZ D L, LEDUC S, et al. Power-to-gas and power-toliquid for managing renewable electricity intermittency in the AlpineRegion[J]. Renewable Energy, 2017, 107: 361-372.
[191] KHATIWADA D, LEDUC S, SILVEIRA S, et al. Optimizing ethanol andbioelectricity production in sugarcane biorefineries in Brazil[J]. RenewableEnergy, 2016, 85: 371-386.
[192] NATARAJAN K, LEDUC S, PELKONEN P, et al. Optimal Locations forMethanol and CHP Production in Eastern Finland[J]. BioEnergy Research,2012, 5(2): 412-423.
[193] WETTERLUND E, LEDUC S, DOTZAUER E, et al. Optimal localisationof biofuel production on a European scale[J]. Energy, 2012, 41(1): 462-472.
[194] MESFUN S, LEDUC S, PATRIZIO P, et al. Spatio-temporal assessment ofintegrating intermittent electricity in the EU and Western Balkans powersector under ambitious CO2 emission policies[J]. Energy, 2018, 164: 676-693.
[195] TIMILSINA G R, CSORDÁS S, MEVEL S. When does a carbon tax onfossil fuels stimulate biofuels?[J]. Ecological Economics, 2011, 70(12):2400-2415.
[196] BLACK, VEATCH. Cost and performance data for power generationtechnologies[R].2012.
[197] SCHNEIDER A, JOST A, COULON C, et al. Global-scale river networkextraction based on high-resolution topography and constrained by lithology,climate, slope, and observed drainage density[J]. Geophysical ResearchLetters, 2017, 44(6): 2773-2781.
[198] SOLARIN S A, BELLO M O, BEKUN F V. Sustainable electricitygeneration: the possibility of substituting fossil fuels for hydropower andsolar energy in Italy[J]. International Journal of Sustainable Development& World Ecology, 2021, 28(5): 429-439.
[199] ANDERSON D, MOGGRIDGE H, WARREN P, et al. The impacts of ‘runof-river’ hydropower on the physical and ecological condition of rivers[J].Water and Environment Journal, 2015, 29(2): 268-276.
[200] KURIQI A, PINHEIRO A N, SORDO-WARD A, et al. Ecological impactsof run-of-river hydropower plants—Current status and prospects on thebrink of energy transition[J]. Renewable and Sustainable Energy Reviews,2021, 142: 110833.
[201] HERBERT R B, MALMSTRÖM M, EBENÅ G, et al. Quantification ofAbiotic Reaction Rates in Mine Tailings: Evaluation of Treatment Methodsfor Eliminating Iron- and Sulfur-Oxidizing Bacteria[J]. EnvironmentalScience & Technology, 2005, 39(3): 770-777.
[202] WU X, WANG Z, XIANG X, et al. Dynamic simulation of CO2 flux in ahydropower reservoir in Southwest China[J]. Journal of Hydrology, 2022,613: 128354.
[203] KELLER P S, MARCÉ R, OBRADOR B, et al. Global carbon budget ofreservoirs is overturned by the quantification of drawdown areas[J]. NatureGeoscience, 2021, 14(6): 402-408.
[204] DEEMER B R, HARRISON J A, LI S, et al. Greenhouse Gas Emissionsfrom Reservoir Water Surfaces: A New Global Synthesis[J]. BioScience,2016, 66(11): 949-964.
[205] GORI A, LIN N, XI D, et al. Tropical cyclone climatology change greatlyexacerbates US extreme rainfall-surge hazard[J]. Nature Climate Change,2022, 12(2): 171-178.
[206] KEMP L, XU C, DEPLEDGE J, et al. Climate Endgame: Exploringcatastrophic climate change scenarios[J]. Proceedings of the NationalAcademy of Sciences, 2022, 119(34): e2108146119.
[207] IPCC. Climate change 2022: impacts, adaptation and vulnerability. Workinggroup II contribution to the IPCC sixth assessment report[R]. 2022.
[208] SHUKLA J B, VERMA M, MISRA A K. Effect of global warming on sealevel rise: A modeling study[J]. Ecological Complexity, 2017, 32: 99-110.
[209] CUTLER M J, MARLON J, HOWE P, et al. ‘Is global warming affectingthe weather?’ Evidence for increased attribution beliefs among coastalversus inland US residents[J]. Environmental Sociology, Routledge, 2020,6(1): 6-18.
[210] HOANG L P, VAN VLIET M T H, KUMMU M, et al. The Mekong’s futureflows under multiple drivers: How climate change, hydropowerdevelopments and irrigation expansions drive hydrological changes[J].Science of The Total Environment, 2019, 649: 601-609.
[211] SPERNA WEILAND F C, VRUGT J A, VAN BEEK R P H, et al. Significantuncertainty in global scale hydrological modeling from precipitation dataerrors[J]. Journal of Hydrology, 2015, 529: 1095-1115.
[212] BIEMANS H, HUTJES R W A, KABAT P, et al. Effects of PrecipitationUncertainty on Discharge Calculations for Main River Basins[J]. Journal ofHydrometeorology, American Meteorological Society, 2009, 10(4): 1011-1025.
[213] NREL C. Performance data for power generation technologies[J].NationalRenewable Energy Laboratory, 2012.
[214] HOEGH-GULDBERG O, JACOB D, BINDI M, et al. Impacts of 1.5 Cglobal warming on natural and human systems[J]. Global warming of 1.5°C., IPCC Secretariat, 2018.
[215] FERRARI L, ESPOSITO F, BECCIANI M, et al. Development of anoptimization algorithm for the energy management of an industrial SmartUser[J]. Applied Energy, 2017, 208: 1468-1486.
[216] SHER F, CURNICK O, AZIZAN M T. Sustainable conversion of renewableenergy sources[J]. Sustainability, 2021, 13(5): 2940.
[217] JOHANNESSON J, CLOWES D. Energy Resources and Markets -Perspectives on the Russia-Ukraine War[J]. European Review, 2022, 30(1):4-23.
[218] CHONG C T, FAN Y V, LEE C T, et al. Post COVID-19 ENERGYsustainability and carbon emissions neutrality[J]. Energy, 2022, 241:122801.
[219] AHMED I, PARIKH P, SIANJASE G, et al. The impact decades-longdependence on hydropower in El Niño impact-prone Zambia is having oncarbon emissions through backup diesel generation[J]. EnvironmentalResearch Letters, 2020, 15(12): 124031.
[220] GILFILLAN D, PITTOCK J. Pumped Storage Hydropower for Sustainableand Low-Carbon Electricity Grids in Pacific Rim Economies[J]. Energies,2022, 15(9): 3139.
[221] HASAN M H, MAHLIA T M I, NUR H. A review on energy scenario andsustainable energy in Indonesia[J]. Renewable and Sustainable EnergyReviews, 2012, 16(4): 2316-2328.
[222] CHAUDHARI S, BROWN E, QUISPE-ABAD R, et al. In-stream turbinesfor rethinking hydropower development in the Amazon basin[J]. NatureSustainability, 2021, 4(8): 680-687.
[223] DENG Z D, COLOTELO A H, BROWN R S, et al. Environmental IssuesRelated to Conventional Hydropower [G]//Alternative Energy and ShaleGas Encyclopedia. John Wiley & Sons, Ltd, 2016: 404-409.
[224] 钟姗姗. 流域水电梯级开发项目累积环境影响作用机制及评价研究[D]. 中南大学, 2014.
[225] YU L, WU X, WU S, et al. Multi-objective optimal operation of cascadehydropower plants considering ecological flow under different ecologicalconditions[J]. Journal of Hydrology, 2021, 601: 126599.
[226] ZHANG H, CHANG J, GAO C, et al. Cascade hydropower plants operationconsidering comprehensive ecological water demands[J]. EnergyConversion and Management, 2019, 180: 119-133.
[227] GRILL G, LEHNER B, THIEME M, et al. Mapping the world’s free-flowingrivers[J]. Nature, 2019, 569(7755): 215-221.
[228] ZHOU Y, GUO S. Incorporating ecological requirement into multipurposereservoir operating rule curves for adaptation to climate change[J]. Journalof Hydrology, 2013, 498: 153-164.
[229] ELKIRAN G, ASLANOVA F, HIZIROGLU S. Effluent Water ReusePossibilities in Northern Cyprus[J]. Water, 2019, 11(2): 191.
[230]ANTIA D D J. Catalytic Partial Desalination of Saline Water[J]. Water, 2022,14(18): 2893.
[231] 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449.
[232] AKAEV A A, DAVYDOVA O I. Forecasting the Indicators of Kondratiev’sGreen Economic Wave (2018-2050), the “Great Energy Transition” and itsImpact on the Socio-Economic Development of the World [G]//Devezas TC, Leitão J C C, Yegorov Y, et al.Global Challenges of Climate Change,Vol.1: Green Energy, Decarbonization, Forecasting the Green Transition.Cham:Springer International Publishing, 2022: 181-205.
[233] MADSUHA A F, SETIAWAN E A, WIBOWO N, et al. Mapping 30 Years ofSustainability of Solar Energy Research in Developing Countries: IndonesiaCase[J]. Sustainability, 2021, 13(20): 11415.
[234] VAUTARD R, GOBIET A, SOBOLOWSKI S, et al. The European climateunder a 2 °C global warming [J]. Environmental Research Letters, 2014,9(3): 1-12.
修改评论