中文版 | English
题名

Nanoparticles with non-equilibrium structures synthesized by physical ways

姓名
姓名拼音
XIA Yu
学号
11856005
学位类型
博士
学位专业
Physics
导师
王湘麟
导师单位
材料科学与工程系
外机构导师
THEIS Wolfgang
外机构导师单位
UNIVERSITY OF BIRMINGHAM
论文答辩日期
2023-03-01
论文提交日期
2023-10-20
学位授予单位
University of Birmingham
学位授予地点
The UK
摘要

Synthesizing nanoparticles with nonequilibrium structures and shapes is full of significance not only due to the excellent catalytic performance, but also because of the role on the understanding of crystal growth. This work focuses on the nanoparticle preparation through physical routes and the structural characterisation using scanning transmission electron microscopy (STEM). Magnetron-sputtering gas condensation method was employed to prepare population-tunable platinum (Pt) tetrahedral and octahedral nanoparticles with mass-selection. The growth pathway of tetrahedral Pt nanoparticles was simulated based on the experimental conditions and the STEM images. The same strategy was employed to prepare nickel-platinum (Ni-Pt) nanoparticles from alloys to core-shells by tuning preparation conditions. In the presence of Ni atoms during the growth stage, Ni-Pt nanoparticles formed with icosahedral and decahedral structures, which show robust structural stability observed by in-situ heating. Joule heating is a novel nanoparticle synthesis, which was utilized to fabricate metal nanoparticles and metallic phosphides within second in this thesis. Thanks to the ultrafast heating and cooling rates of the Joule heating synthesis, both stacking faults and metastable structures were remained in the as-prepared nanoparticles. Pt doped ruthenium nanoparticles with a facecentered cubic structure prepared using flash Joule heating was demonstrated for the application of electrocatalytic hydrogen evolution reaction with ultralow overpotentials and small Tafel slopes. The synthesis techniques shown in this thesis have implications for catalysts preparation.

 

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-07
参考文献列表

(1) Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured Electrocatalysts with Tunable Activity and Selectivity. Nat. Rev. Mater. 2016, 1, 1–15.
(2) Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catal. 2019, 9 (9), 7937–7956.
(3) Mahata, A.; Nair, A. S.; Pathak, B. Recent Advancements in Pt-Nanostructure-Based Electrocatalysts for the Oxygen Reduction Reaction. Catal. Sci. Technol. 2019, 9 (18), 4835–4863.
(4) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nat. Chem. 2010, 2 (6), 454–460.
(5) Zhang, L.; Doyle-Davis, K.; Sun, X. Pt-Based Electrocatalysts with High Atom Utilization Efficiency: From Nanostructures to Single Atoms. Energy Environ. Sci. 2019, 12 (2), 492–517.
(6) Huang, X.; Li, Z.; Yu, Z.; Deng, X.; Xin, Y. Recent Advances in the Synthesis, Properties, and Biological Applications of Platinum Nanoclusters. J. Nanomater. 2019, 2019, 1–31.
(7) Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108 (3), 845–910.
(8) Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118 (10), 4981–5079.
(9) Tyo, E. C.; Vajda, S. Catalysis by Clusters with Precise Numbers of Atoms. Nat. Nanotechnol. 2015, 10 (7), 577–588.
(10) Wu, J.; Qi, L.; You, H.; Gross, A.; Li, J.; Yang, H. Icosahedral Platinum Alloy Nanocrystals with Enhanced Electrocatalytic Activities. J. Am. Chem. Soc. 2012, 134 (29), 11880–11883.(11) Rizo, R.; Roldan Cuenya, B. Shape-Controlled Nanoparticles as Anodic Catalysts in Low-Temperature Fuel Cells. ACS Energy Lett. 2019, 4 (6), 1484–1495.(12) Devivaraprasad, R.; Nalajala, N.; Bera, B.; Neergat, M. Electrocatalysis of Oxygen Reduction Reaction on Shape-Controlled Pt and Pd Nanoparticles—Importance of Surface Cleanliness and Reconstruction. Front. Chem. 2019, 7 (October), 1–25.(13) Nicolae Strambeanu, Laurentiu Demetrovici, D. D. and M. L. Nanoparticles. Definition, Classification, General Physical Properties. In Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment; 2015; pp vii–viii.(14) Yacamán, M. J.; Ascencio, J. A.; Liu, H. B.; Gardea-Torresdey, J. Structure Shape and Stability of Nanometric Sized Particles. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2001, 19 (4), 1091.(15) Baletto, F.; Ferrando, R. Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects. Rev. Mod. Phys. 2005, 77 (1), 371–423. (16) Xia, Y.; Xia, X.; Peng, H. C. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. J. Am. Chem. Soc. 2015, 137 (25), 7947–7966.(17) Liang, J.; Ma, F.; Hwang, S.; Wang, X.; Sokolowski, J.; Li, Q.; Wu, G.; Su, D. Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule 2019, 3 (4), 956–991.(18) Wulff, G. On the Question of Speed of Growth and Dissolution of Crystal Surfaces. Zeitschrift für Kryst. und Mineral. 1901, No. 34, 449–530.(19) Marks, L. D. Modified Wulff Constructions for Twinned Particles. J. Cryst. Growth 1983, 61 (3), 556–566.(20) Ringe, E.; Van Duyne, R. P.; Marks, L. D. Kinetic and Thermodynamic Modified Wulff Constructions for Twinned Nanoparticles. J. Phys. Chem. C 2013, 117 (31), 15859–15870.(21) Vernieres, J.; Steinhauer, S.; Zhao, J.; Grammatikopoulos, P.; Ferrando, R.; Nordlund, K.; Djurabekova, F.; Sowwan, M. Site-Specific Wetting of Iron Nanocubes by Gold Atoms in Gas-Phase Synthesis. Adv. Sci. 2019, 6 (13).(22) Vernieres, J.; Chapelle, A.; Nordlund, K.; Menini, P.; Sowwan, M.; Diaz, R. E.; Steinhauer, S.; Dufour, N.; Djurabekova, F.; Grammatikopoulos, P.; et al. Gas Phase Synthesis of Multifunctional Fe-Based Nanocubes. Adv. Funct. Mater. 2017, 27 (11), 1605328.(23) Rahm, J. M.; Erhart, P. Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size. Nano Lett. 2017, 17 (9), 5775–5781.(24) Zhao, J.; Baibuz, E.; Vernieres, J.; Grammatikopoulos, P.; Jansson, V.; Nagel, M.; Steinhauer, S.; Sowwan, M.; Kuronen, A.; Nordlund, K.; et al. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation. ACS Nano 2016, 10 (4), 4684–4694.(25) Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science (80-. ). 1996, 272 (5270), 1924–1925.(26) Petroski, J. M.; Wang, Z. L.; Green, T. C.; El-Sayed, M. A. Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles. J. Phys. Chem. B 1998, 102 (18), 3316–3320.(27) Wang, Y.; Xie, S.; Liu, J.; Park, J.; Huang, C. Z.; Xia, Y. Shape-Controlled Synthesis of Palladium Nanocrystals: A Mechanistic Understanding of the Evolution from Octahedrons to Tetrahedrons. Nano Lett. 2013, 13 (5), 2276–2281.(28) Marks, L. D.; Marks, L. D. Surface Structure and Energetics of Multiply Twinned Particles. Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 1984, 49 (1), 81–93.(29) Baletto, F.; Ferrando, R.; Fortunelli, A.; Montalenti, F.; Mottet, C. Crossover among Structural Motifs in Transition and Noble-Metal Clusters. J. Chem. Phys. 2002, 116 (9), 3856–3863.(30) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chemie - Int. Ed.2009, 48 (1), 60–103.(31) An, K.; Somorjai, G. A. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem 2012, 4 (10), 1512–1524.(32) Zhao, M.; Chen, Z.; Lyu, Z.; Hood, Z. D.; Xie, M.; Vara, M.; Chi, M.; Xia, Y. Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, {111} Facets, Thermal Stability up to 400 °C, and Enhanced Catalytic Activity. J. Am. Chem. Soc. 2019, 141 (17), 7028–7036.(33) Meziane, L.; Salzemann, C.; Aubert, C.; Gérard, H.; Petit, C.; Petit, M. Hcp Cobalt Nanocrystals with High Magnetic Anisotropy Prepared by Easy One-Pot Synthesis. Nanoscale 2016, 8 (44), 18640–18645.(34) Tao, A. R.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310–325.(35) Niu, Z.; Li, Y. Removal and Utilization of Capping Agents in Nanocatalysis. Chem. Mater. 2014, 26 (1), 72–83.(36) Liu, Y.; Sun, C.; Bolin, T.; Wu, T.; Liu, Y.; Sternberg, M.; Sun, S.; Lin, X. M. Kinetic Pathway of Palladium Nanoparticle Sulfidation Process at High Temperatures. Nano Lett. 2013, 13 (10), 4893–4901.(37) Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; Yu, D. Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles. Science (80-. ). 2018, 1494 (March), 1489–1494.(38) Deng, B.; Wang, Z.; Chen, W.; Li, J. T.; Luong, D. X.; Carter, R. A.; Gao, G.; Yakobson, B. I.; Zhao, Y.; Tour, J. M. Phase Controlled Synthesis of Transition Metal Carbide Nanocrystals by Ultrafast Flash Joule Heating. Nat. Commun. 2022, 13 (1), 1–10.(39) Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W.; Salvatierra, R. V.; Ren, M.; McHugh, E. A.; Advincula, P. A.; et al. Gram-Scale Bottom-up Flash Graphene Synthesis. Nature 2020, 577 (7792), 647–651.(40) Song, J. Y.; Kim, C.; Kim, M.; Cho, K. M.; Gereige, I.; Jung, W. Bin; Jeong, H.; Jung, H. T. Generation of High-Density Nanoparticles in the Carbothermal Shock Method. Sci. Adv. 2021, 7 (48).(41) Cui, M.; Yang, C.; Hwang, S.; Yang, M.; Overa, S.; Dong, Q.; Yao, Y.; Brozena, A. H.; Cullen, D. A.; Chi, M.; et al. Multi-Principal Elemental Intermetallic Nanoparticles Synthesized via a Disorder-to-Order Transition. Sci. Adv. 2022, 8 (4), eabm4322.(42) Chong, L.; Wen, J.; Kubal, J.; Sen, F. G.; Zou, J.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W.; Liu, D. J. Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks. Science (80-. ). 2018, 362 (6420), 1276–1281.(43) Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C.; et al. Sulfur-Anchoring Synthesis of Platinum Intermetallic Nanoparticle Catalysts for Fuel Cells. Science (80-. ). 2021, 374 (6566), 459–464.(44) Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A Sulfur-Tethering Synthesis Strategy toward High-Loading Atomically Dispersed Noble Metal Catalysts. Sci. Adv. 2019, 5 (10).(45) Bilger, D.; Homayounfar, S. Z.; Andrew, T. L. A Critical Review of Reactive VaporDeposition for Conjugated Polymer Synthesis. J. Mater. Chem. C 2019, 7 (24), 7159–7174.(46) Perrotta, A.; Werzer, O.; Coclite, A. M. Strategies for Drug Encapsulation and Controlled Delivery Based on Vapor-Phase Deposited Thin Films. Adv. Eng. Mater. 2018, 20 (3).(47) Swihart, M. T. Vapor-Phase Synthesis of Nanoparticles. Curr. Opin. Colloid Interface Sci. 2003, 8 (1), 127–133.(48) Mackus, A. J. M.; Weber, M. J.; Thissen, N. F. W.; Garcia-Alonso, D.; Vervuurt, R. H. J.; Assali, S.; Bol, A. A.; Verheijen, M. A.; Kessels, W. M. M. Atomic Layer Deposition of Pd and Pt Nanoparticles for Catalysis: On the Mechanisms of Nanoparticle Formation. Nanotechnology 2015, 27 (3).(49) Dubkov, S.; Gromov, D.; Savitskiy, A.; Trifonov, A.; Gavrilov, S. Alloying Effects at Bicomponent Au-Cu and In-Sn Particle Arrays Formation by Vacuum-Thermal Evaporation. Mater. Res. Bull. 2019, 112 (July 2017), 438–444.(50) Shishino, Y.; Yonezawa, T.; Kawai, K.; Nishihara, H. Molten Matrix Sputtering Synthesis of Water-Soluble Luminescent Au Nanoparticles with a Large Stokes Shift. Chem. Commun. 2010, 46 (38), 7211–7213.(51) Morita, K.; Sakuma, K.; Miyajima, K.; Mafuné, F. Thermally and Chemically Stable Mixed Valence Copper Oxide Cluster Ions Revealed by Post Heating. J. Phys. Chem. A 2013, 117 (40), 10145–10150.(52) Li, Z.; Fu, J. Y.; Feng, Y.; Dong, C. K.; Liu, H.; Du, X. W. A Silver Catalyst Activated by Stacking Faults for the Hydrogen Evolution Reaction. Nat. Catal. 2019, 2 (12), 1107–1114.(53) Tabrizi, N. S.; Ullmann, M.; Vons, V. A.; Lafont, U.; Schmidt-Ott, A. Generation of Nanoparticles by Spark Discharge. J. Nanoparticle Res. 2009, 11 (2), 315–332.(54) Reinmann, R.; Akram, M. Temporal Investigation of a Fast Spark Discharge in Chemically Inert Gases. J. Phys. D. Appl. Phys. 1997, 30 (7), 1125–1134.(55) Pratontep, S.; Carroll, S. J.; Xirouchaki, C.; Streun, M.; Palmer, R. E. Size-Selected Cluster Beam Source Based on Radio Frequency Magnetron Plasma Sputtering and Gas Condensation. Rev. Sci. Instrum. 2005, 76 (4).(56) Hihara, T.; Sumiyama, K. Formation and Size Control of a Ni Cluster by Plasma Gas Condensation. J. Appl. Phys. 1998, 84 (9), 5270–5276.(57) Nguyen, M. T.; Zhang, H.; Deng, L.; Tokunaga, T.; Yonezawa, T. Au/Cu Bimetallic Nanoparticles via Double-Target Sputtering onto a Liquid Polymer. Langmuir 2017, 33 (43), 12389–12397.(58) Zheng, Y. R.; Vernieres, J.; Wang, Z.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T. W.; Presel, F.; Altantzis, T.; Fatermans, J.; et al. Monitoring Oxygen Production on Mass-Selected Iridium–Tantalum Oxide Electrocatalysts. Nat. Energy 2022, 7 (1), 55–64.(59) Gudmundsson, J. T.; Hecimovic, A. Foundations of DC Plasma Sources. Plasma Sources Sci. Technol. 2017, 26 (12).(60) Behrisch, R.; Eckstein, W. Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies. In Topics in Applied Physics;Springer Berlin, 2007; pp 1–19.(61) Gudmundsson, J. T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29 (11).(62) Gudmundsson, J. T.; Fischer, J.; Hinriksson, B. P.; Rudolph, M.; Lundin, D. Ionization Region Model of High Power Impulse Magnetron Sputtering of Copper. Surf. Coatings Technol. 2022, 442 (February), 128189.(63) Smirnov, B. M. Processes Involving Clusters and Small Particles in a Buffer Gas. Uspekhi Fiz. Nauk 2011, 181 (7), 713.(64) Smirnov, B. M. Cluster Plasma. Uspekhi Fiz. Nauk 2000, 170 (5), 532–534.(65) Grammatikopoulos, P.; Steinhauer, S.; Vernieres, J.; Singh, V.; Sowwan, M. Nanoparticle Design by Gas-Phase Synthesis. Adv. Phys. X 2016, 1 (1), 81–100.(66) Von Issendorff, B.; Palmer, R. E. A New High Transmission Infinite Range Mass Selector for Cluster and Nanoparticle Beams. Rev. Sci. Instrum. 1999, 70 (12), 4497–4501.(67) D.E. Jesson; S. J. Pennycook. Incoherent Imaging of Crystals Using Thermally Scattered Electrons. Proc. R. Soc. London A 1995, 449 (1936), 273–293.(68) Williams, David B., C. C. B. Transimission Electron Microscopy-A Textbook for Materials Science; Springer US: New York, 2008.(69) Nellist, P. D.; Pennycook, S. J. The Principles and Interpretation of Annular Dark-Field Z-Contrast Imaging; 2000; Vol. 113.(70) Pennycook, S. J. Structure Determination through Z-Contrast Microscopy. Adv. Imaging Electron Phys. 2002, 123 (C), 173–206.(71) Rafferty, B.; Nellist, D.; Pennycook, J. On the Origin of Transverse Incoherence in Z-Contrast STEM. J. Electron Microsc. (Tokyo). 2001, 50 (3), 227–233.(72) Nellist, P. D.; Behan, G.; Kirkland, A. I.; Hetherington, C. J. D. Confocal Operation of a Transmission Electron Microscope with Two Aberration Correctors. Appl. Phys. Lett. 2006, 89 (12), 87–90.(73) Haider, M.; Braunshausen, G.; Schwan, E. Correction of the Spherical Aberration of a 200 KV TEM by Means of a Hexapole-Corrector. Optik (Stuttg). 1995, 99 (4), 167–179.(74) Haider, M.; Rose, H.; Uhlemann, S.; Schwan, E.; Kabius, B.; Urban, K. A Spherical-Aberration-Corrected 200 KV Transmission Electron Microscope. Ultramicroscopy 1998, 75 (1), 53–60.(75) Kisielowski, C.; Freitag, B.; Bischoff, M.; Van Lin, H.; Lazar, S.; Knippels, G.; Tiemeijer, P.; Van Der Stam, M.; Von Harrach, S.; Stekelenburg, M.; et al. Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit. Microsc. Microanal. 2008, 14 (5), 469–477.(76) Lin, Y.; Zhou, M.; Tai, X.; Li, H.; Han, X.; Yu, J. Analytical Transmission Electron Microscopy for Emerging Advanced Materials. Matter 2021, 4 (7), 2309–2339.(77) Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope, Third edit.; Springer New York, 2011.(78) E, H.; MacArthur, K. E.; Pennycook, T. J.; Okunishi, E.; D’Alfonso, A. J.; Lugg, N.R.; Allen, L. J.; Nellist, P. D. Probe Integrated Scattering Cross Sections in the Analysis of Atomic Resolution HAADF STEM Images. Ultramicroscopy 2013, 133, 109–119.(79) Martinez, G. T.; Rosenauer, A.; De Backer, A.; Verbeeck, J.; Van Aert, S. Quantitative Composition Determination at the Atomic Level Using Model-Based High-Angle Annular Dark Field Scanning Transmission Electron Microscopy. Ultramicroscopy 2014, 137 (2014), 12–19.(80) Jones, L. Quantitative ADF STEM: Acquisition, Analysis and Interpretation. IOP Conf. Ser. Mater. Sci. Eng. 2016, 109 (1).(81) Langlois, C.; Wang, Z. W.; Pearmain, D.; Ricolleau, C.; Li, Z. Y. HAADF-STEM Imaging of CuAg Core-Shell Nanoparticles. J. Phys. Conf. Ser. 2010, 241.(82) Hovden, R.; Cueva, P.; Mundy, J. A.; Muller, D. A. The Open-Source Cornell Spectrum Imager. Micros. Today 2013, 21 (1), 40–44.(83) Yedra, L.; Xuriguera, E.; Estrader, M.; López-Ortega, A.; Baró, M. D.; Nogués, J.; Roldan, M.; Varela, M.; Estradé, S.; Peiró, F. Oxide Wizard: An EELS Application to Characterize the White Lines of Transition Metal Edges. In Microscopy and Microanalysis; 2014; Vol. 20, pp 698–705.(84) Wang, Z. L.; Yin, J. S.; Jiang, Y. D. EELS Analysis of Cation Valence States and Oxygen Vacancies in Magnetic Oxides. In Micron; 2000; Vol. 31, pp 571–580.(85) Pearson, D. H.,Ahn,C. C., Fultz, B. White Lines and D-Electron Occupancies for the 3d and 4d Transition Metals. Phys. Rev. B 1993, 47 (14), 8471.(86) BOTTON, G. A.; APPEL, C. C.; HORSEWELL, A.; STOBBS, W. M. Quantification of the EELS Near‐edge Structures to Study Mn Doping in Oxides. J. Microsc. 1995, 180 (3), 211–216.(87) Bawane, K.; Manganaris, P.; Wang, Y.; Sure, J.; Ronne, A.; Halstenberg, P.; Dai, S.; Gill, S. K.; Sasaki, K.; Chen-Wiegart, Y. chen K.; et al. Determining Oxidation States of Transition Metals in Molten Salt Corrosion Using Electron Energy Loss Spectroscopy. Scr. Mater. 2021, 197.(88) Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120 (2), 851–918.(89) Zeng, M.; Li, Y. Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3 (29), 14942–14962.(90) Allen J. Bard, L. R. F. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, 2000.(91) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135 (45), 16977–16987.(92) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446–6473.(93) Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. J. Electrochem. Soc. 2010, 157 (11), B1529.(94) Zhao, G.; Rui, K.; Dou, S. X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28 (43).(95) Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z. J. Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Lett. 2018, 10 (4), 1–15.(96) Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30 (15), 1–20.(97) Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11 (4), 744–771.(98) Young, N. P.; Li, Z. Y.; Chen, Y.; Palomba, S.; Di Vece, M.; Palmer, R. E. Weighing Supported Nanoparticles: Size-Selected Clusters as Mass Standards in Nanometrology. Phys. Rev. Lett. 2008, 101 (24), 28–31.(99) Li, Z. Y.; Young, N. P.; Di Vece, M.; Palomba, S.; Palmer, R. E.; Bleloch, A. L.; Curley, B. C.; Johnston, R. L.; Jiang, J.; Yuan, J. Three-Dimensional Atomic-Scale Structure of Size-Selected Gold Nanoclusters. Nature 2008, 451 (7174), 46–48.(100) Yang, J. C.; Bradley, S.; Gibson, J. M. Rapid and Semi-Automated Method for Analysis of the Number of Atoms of Ultra-Small Platinum Clusters on Carbon. Microsc. Microanal. 2000, 6 (4), 353–357.(101) House, S. D.; Chen, Y.; Jin, R.; Yang, J. C. High-Throughput, Semi-Automated Quantitative STEM Mass Measurement of Supported Metal Nanoparticles Using a Conventional TEM/STEM. Ultramicroscopy 2017, 182, 145–155.(102) Xia, Y.; Harrison, P.; Ornelas, I. M.; Wang, H. L.; Li, Z. Y. HAADF-STEM Image Analysis for Size-Selected Platinum Nanoclusters. J. Microsc. 2020, 279 (3), 229–233.(103) He, D. S.; Li, Z. Y. A Practical Approach to Quantify the ADF Detector in STEM. J. Phys. Conf. Ser. 2014, 522 (1).(104) Khojasteh, M.; Kresin, V. V. Influence of Source Parameters on the Growth of Metal Nanoparticles by Sputter-Gas-Aggregation. Appl. Nanosci. 2017, 7 (8), 875–883.(105) YAMAMURA, Y.; MATSUNAMI, N.; ITOH, N. New Empirical Formula for the Sputtering Yield. Radiat Eff Lett 1982, V 68 (N 3), 83–87.(106) Quesnel, E.; Pauliac-Vaujour, E.; Muffato, V. Modeling Metallic Nanoparticle Synthesis in a Magnetron-Based Nanocluster Source by Gas Condensation of a Sputtered Vapor. J. Appl. Phys. 2010, 107 (5).(107) Kashtanov, P. V.; Smirnov, B. M.; Hippler, R. Magnetron Plasma and Nanotechnology. Physics-Uspekhi 2007, 50 (5).(108) Blažek, J.; Kousal, J.; Biederman, H.; Kyliá N, O.; Hanuš, J.; Slavinská, D. Charging of Nanoparticles in Stationary Plasma in a Gas Aggregation Cluster Source. J. Phys. D. Appl. Phys. 2015, 48 (41).(109) Ding, R.; Padilla Espinosa, I. M.; Loevlie, D.; Azadehranjbar, S.; Baker, A. J.; Mpourmpakis, G.; Martini, A.; Jacobs, T. D. B. Size-Dependent Shape Distributions of Platinum Nanoparticles. Nanoscale Adv. 2022, 4 (18), 3978–3986.(110) Schebarchov, D.; Hendy, S. C. Thermal Instability of Decahedral Structures inPlatinum Nanoparticles. Eur. Phys. J. D 2007, 43 (1–3), 11–14.(111) Zeng, K.; Zhang, J.; Gao, W.; Wu, L.; Liu, H.; Gao, J.; Li, Z.; Zhou, J.; Li, T.; Liang, Z.; et al. Surface-Decorated High-Entropy Alloy Catalysts with Significantly Boosted Activity and Stability. Adv. Funct. Mater. 2022, 2204643, 1–12.(112) Liu, D. L. Particle Deposition onto Enclosure Surfaces, First Edit.; Elsevier Inc., 2009.(113) Ounis, H.; Ahmadi, G.; McLaughlin, J. B. Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer. J. Colloid Interface Sci. 1991, 143 (1), 266–277.(114) Zhang, L.; Shao, J.; Chen, X. Numerical Simulation of Nanocluster Motion through a DC Magnetron Nanocluster Source. Vacuum 2016, 128, 137–145.(115) Turchanin, M. A.; Agraval, P. G. Cohesive Energy, Properties, and Formation Energy of Transition Metal Alloys. Powder Metall. Met. Ceram. 2008, 47 (1–2), 26–39.(116) Kudriavtsev, Y.; Villegas, A.; Godines, A.; Asomoza, R. Calculation of the Surface Binding Energy for Ion Sputtered Particles. Appl. Surf. Sci. 2005, 239 (3–4), 273–278.(117) Richard Tran, Zihan Xu, Balachandran Radhakrishnan, Donald Winston, Wenhao Sun, K. A. P. & S. P. O. Data Descriptor: Surface Energies of Elemental Crystals. Sci. Data 2016, 3, 160080.(118) Masini, F.; Hernández-Fernández, P.; Deiana, D.; Strebel, C. E.; McCarthy, D. N.; Bodin, A.; Malacrida, P.; Stephens, I.; Chorkendorff, I. Exploring the Phase Space of Time of Flight Mass Selected PtxY Nanoparticles. Phys. Chem. Chem. Phys. 2014, 16 (48), 26506–26513.(119) Hjorth Larsen, A.; JØrgen Mortensen, J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C.; et al. The Atomic Simulation Environment - A Python Library for Working with Atoms; 2017; Vol. 29.(120) Xia, Y.; Nelli, D.; Ferrando, R.; Yuan, J.; Li, Z. Y. Shape Control of Size-Selected Naked Platinum Nanocrystals. Nat. Commun. 2021, 12 (1), 1–8.(121) Zhang, W. B.; Chen, C.; Zhang, S. Y. Equilibrium Crystal Shape of Ni from First Principles. J. Phys. Chem. C 2013, 117 (41), 21274–21280.(122) He, D. S.; Li, Z. Y.; Yuan, J. Kinematic HAADF-STEM Image Simulation of Small Nanoparticles. Micron 2015, 74, 47–53.(123) Marks, L. D.; Peng, L. Nanoparticle Shape, Thermodynamics and Kinetics. J. Phys. Condens. Matter 2016, 28 (5).(124) Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2021, 121 (2), 649–735.(125) Pearmain, D.; Park, S. J.; Abdela, A.; Palmer, R. E.; Li, Z. Y. The Size-Dependent Morphology of Pd Nanoclusters Formed by Gas Condensation. Nanoscale 2015, 7 (46), 19647–19652.(126) Nelli, D.; Krishnadas, A.; Ferrando, R.; Minnai, C. One-Step Growth of Core–Shell (PtPd)@Pt and (PtPd)@Pd Nanoparticles in the Gas Phase. J. Phys. Chem. C 2020.(127) Baletto, F.; Mottet, C.; Ferrando, R. Molecular Dynamics Simulations of Surface Diffusion and Growth on Silver and Gold Clusters. Surf. Sci. 2000, 446 (1–2), 31–45.(128) Villarba, M.; Jónsson, H. Diffusion Mechanisms Relevant to Metal Crystal Growth: Pt/Pt(111). Surf. Sci. 1994, 317 (1–2), 15–36.(129) Gölzhäuser, A.; Ehrlich, G. Atom Movement and Binding on Surface Clusters: Pt on Pt(111) Clusters. Phys. Rev. Lett. 1996, 77 (7), 1334–1337.(130) Ayesh, A. I.; Thaker, S.; Qamhieh, N.; Ghamlouche, H. Size-Controlled Pd Nanocluster Grown by Plasma Gas-Condensation Method. J. Nanoparticle Res. 2011, 13 (3), 1125–1131.(131) Liu, C.; Zhang, L.; Zhang, S.; Liu, F.; Wang, G.; Han, M. Influence of Discharge Power on the Size of the Pd Cluster Generated with a Magnetron Plasma Gas Aggregation Cluster Source. Vacuum 2020, 179 (February), 109486.(132) Xia, Y.; Xia, X.; Peng, H. C. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. J. Am. Chem. Soc. 2015, 137 (25), 7947–7966.(133) Baletto, F.; Ferrando, R.; Fortunelli, A.; Montalenti, F.; Mottet, C. Crossover among Structural Motifs in Transition and Noble-Metal Clusters. J. Chem. Phys. 2002, 116 (9), 3856–3863.(134) Cleveland, C. L.; Landman, U. The Energetics and Structure of Nickel Clusters: Size Dependence. J. Chem. Phys. 1991, 94 (11), 7376–7396.(135) van Omme, J. T.; Zakhozheva, M.; Spruit, R. G.; Sholkina, M.; Pérez Garza, H. H. Advanced Microheater for in Situ Transmission Electron Microscopy; Enabling Unexplored Analytical Studies and Extreme Spatial Stability. Ultramicroscopy 2018, 192, 14–20.(136) Couchman, P. R.; Jesser, W. Thermodynamic Theory of Size Dependence. Nature 1977, 269 (5628), 481–483.(137) Foster, D. M.; Pavloudis, T.; Kioseoglou, J.; Palmer, R. E. Atomic-Resolution Imaging of Surface and Core Melting in Individual Size-Selected Au Nanoclusters on Carbon. Nat. Commun. 2019, 10 (1), 1–8.(138) Samsonov, V. M.; Vasilyev, S. A.; Nebyvalova, K. K.; Talyzin, I. V.; Sdobnyakov, N. Y.; Sokolov, D. N.; Alymov, M. I. Melting Temperature and Binding Energy of Metal Nanoparticles: Size Dependences, Interrelation between Them, and Some Correlations with Structural Stability of Nanoclusters. J. Nanoparticle Res. 2020, 22 (8).(139) Gunawan, L.; Johari, G. P. Specific Heat, Melting, Crystallization, and Oxidation of Zinc Nanoparticles and Their Transmission Electron Microscopy Studies. J. Phys. Chem. C 2008, 112 (51), 20159–20166.(140) Wang, Z. L.; Petroski, J. M.; Green, T. C.; El-Sayed, M. A. Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals. J. Phys. Chem. B 1998, 102 (32), 6145–6151.(141) Guisbiers, G.; Abudukelimu, G.; Hourlier, D. Size-Dependent Catalytic and Melting Properties of Platinum-Palladium Nanoparticles. Nanoscale Res. Lett. 2011, 6 (1), 1–5.(142) Egerton, R. F. Radiation Damage to Organic and Inorganic Specimens in the TEM. Micron. Elsevier Ltd April 1, 2019, pp 72–87.(143) Wang, Z.; Gui, L.; Han, D.; Xu, Z.; Han, L.; Xu, S. Measurement and Evaluation of Local Surface Temperature Induced by Irradiation of Nanoscaled or Microscaled Electron Beams. Nanoscale Res. Lett. 2019, 14.(144) Jones, L.; Macarthur, K. E.; Fauske, V. T.; Van Helvoort, A. T. J.; Nellist, P. D. RapidEstimation of Catalyst Nanoparticle Morphology and Atomic-Coordination by High-Resolution Z-Contrast Electron Microscopy. Nano Lett. 2014, 14 (11), 6336–6341.(145) Banhart, F. Irradiation Effects in Carbon Nanostructures. Reports Prog. Phys. 1999, 62 (8), 1181–1221.(146) Knez, D.; Schnedlitz, M.; Lasserus, M.; Schiffmann, A.; Ernst, W. E.; Hofer, F. Modelling Electron Beam Induced Dynamics in Metallic Nanoclusters. Ultramicroscopy 2018, 192 (May), 69–79.(147) Egerton, R. F. Beam-Induced Motion of Adatoms in the Transmission Electron Microscope. Microsc. Microanal. 2013, 19 (2), 479–486.(148) Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G. T.; Béché, A.; Nellist, P. D. Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy. Phys. Rev. Lett. 2019, 122 (6), 1–6.(149) Aveyard, R.; Ferrando, R.; Johnston, R. L.; Yuan, J. Modeling Nanoscale Inhomogeneities for Quantitative HAADF STEM Imaging. Phys. Rev. Lett. 2014, 113 (7), 1–5.(150) Ding, Y.; Fan, F.; Tian, Z.; Wang, Z. L. Atomic Structure of Au-Pd Bimetallic Alloyed Nanoparticles. J. Am. Chem. Soc. 2010, 132 (35), 12480–12486.(151) Wang, Z. W.; Li, Z. Y.; Park, S. J.; Abdela, A.; Tang, D.; Palmer, R. E. Quantitative Z-Contrast Imaging in the Scanning Transmission Electron Microscope with Size-Selected Clusters. Phys. Rev. B - Condens. Matter Mater. Phys. 2011, 84 (7), 2–4.(152) Weyland, M.; Midgley, P. A.; Thomas, J. M. Electron Tomography of Nanoparticle Catalysts on Porous Supports: A New Technique Based on Rutherford Scattering. J. Phys. Chem. B 2001, 105 (33), 7882–7886.(153) S.J. PENNYCOOKMayr, G. Z-Contrast Stem for Materials Science. Ultramicroscopy 1989, 143 (1), 82–97.(154) Spence, J. C. H.; Spence, J. C. H. Scanning Transmission Electron Microscopy and Z-Contrast. High-Resolution Electron Microsc. 2014, No. 3, 233–263.(155) Förster, G. D.; Benoit, M.; Lam, J. Alloy, Janus and Core-Shell Nanoparticles: Numerical Modeling of Their Nucleation and Growth in Physical Synthesis. Phys. Chem. Chem. Phys. 2019, 21 (41), 22774–22781.(156) Rossnagel, S. M.; Kaufman, H. R. Current – Voltage Relations in Magnetrons Current-Voltage Relations in Magnetrons. 2017, 223 (1988).(157) Grais, K. I.; Shaltout, A. A.; Ali, S. S.; Boutros, R. M.; El-behery, K. M.; El-Sayed, Z. A. A New Formula for Sputtering Yield as Function of Ion Energies at Normal Incidence. Phys. B Condens. Matter 2010, 405 (7), 1775–1781.(158) Denton, A. R.; Ashcroft, N. W. Vegards Law. Phys. Rev. A 1991, 43 (6), 3161–3164.(159) Mukherjee, D.; Gamler, J. T. L.; Skrabalak, S. E.; Unocic, R. R. Lattice Strain Measurement of Core@Shell Electrocatalysts with 4D Scanning Transmission Electron Microscopy Nanobeam Electron Diffraction. ACS Catal. 2020, 10 (10), 5529–5541.(160) Gocyla, M.; Kuehl, S.; Shviro, M.; Heyen, H.; Selve, S.; Dunin-Borkowski, R. E.; Heggen, M.; Strasser, P. Shape Stability of Octahedral PtNi Nanocatalysts for Electrochemical Oxygen Reduction Reaction Studied by in Situ Transmission Electron Microscopy. ACS Nano 2018, 12 (6), 5306–5311.(161) Vara, M.; Roling, L. T.; Wang, X.; Elnabawy, A. O.; Hood, Z. D.; Chi, M.; Mavrikakis, M.; Xia, Y. Understanding the Thermal Stability of Palladium-Platinum Core-Shell Nanocrystals by in Situ Transmission Electron Microscopy and Density Functional Theory. ACS Nano 2017, 11 (5), 4571–4581.(162) Van Teijlingen, A.; Davis, S. A.; Hall, S. R. Size-Dependent Melting Point Depression of Nickel Nanoparticles. Nanoscale Adv. 2020, 2 (6), 2347–2351.(163) Graetz, J.; Ahn, C. C.; Ouyang, H.; Rez, P.; Fultz, B. White Lines and D-Band Occupancy for the 3d Transition-Metal Oxides and Lithium Transition-Metal Oxides. Phys. Rev. B - Condens. Matter Mater. Phys. 2004, 69 (23), 1–6.(164) Potapov, P. L.; Kulkova, S. E.; Schryvers, D. Study of Changes in L32 EELS Ionization Edges upon Formation of Ni-Based Intermetallic Compounds. J. Microsc. 2003, 210 (1), 102–109.(165) Lewis, E. A.; Slater, T. J. A.; Prestat, E.; Macedo, A.; O’Brien, P.; Camargo, P. H. C.; Haigh, S. J. Real-Time Imaging and Elemental Mapping of AgAu Nanoparticle Transformations. Nanoscale 2014, 6 (22), 13598–13605.(166) Railsback, J. G.; Johnston-Peck, A. C.; Wang, J.; Tracy, J. B. Size-Dependent Nanoscale Kirkendall Effect during the Oxidation of Nickel Nanoparticles. ACS Nano 2010, 4 (4), 1913–1920.(167) Smigelskas A, K. E. Zinc Diffusion in Alpha Brass. Trans. AIME 1947, 171, 130–142.(168) Chee, S. W.; Wong, Z. M.; Baraissov, Z.; Tan, S. F.; Tan, T. L.; Mirsaidov, U. Interface-Mediated Kirkendall Effect and Nanoscale Void Migration in Bimetallic Nanoparticles during Interdiffusion. Nat. Commun. 2019, 10 (1), 1–8.(169) Yang, Z.; Yang, N.; Pileni, M. P. Nano Kirkendall Effect Related to Nanocrystallinity of Metal Nanocrystals: Influence of the Outward and Inward Atomic Diffusion on the Final Nanoparticle Structure. J. Phys. Chem. C 2015, 119 (39), 22249–22260.(170) Li, T.; Yao, Y.; Huang, Z.; Xie, P.; Liu, Z.; Yang, M.; Gao, J.; Zeng, K.; Brozena, A. H.; Pastel, G.; et al. Denary Oxide Nanoparticles as Highly Stable Catalysts for Methane Combustion. Nat. Catal. 2021, 4 (1), 62–70.(171) Abdelhafiz, A.; Wang, B.; Harutyunyan, A. R.; Li, J. Carbothermal Shock Synthesis of High Entropy Oxide Catalysts : Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction. 2022, 10–15.(172) Yao, Y.; Huang, Z.; Xie, P.; Wu, L.; Ma, L.; Li, T.; Pang, Z.; Jiao, M.; Liang, Z.; Gao, J.; et al. High Temperature Shockwave Stabilized Single Atoms. Nat. Nanotechnol. 2019.(173) Okulov, I. V.; Soldatov, I. V.; Sarmanova, M. F.; Kaban, I.; Gemming, T.; Edström, K.; Eckert, J. Flash Joule Heating for Ductilization of Metallic Glasses. Nat. Commun. 2015, 6, 1–6.(174) Algozeeb, W. A.; Savas, P. E.; Luong, D. X.; Chen, W.; Kittrell, C.; Bhat, M.; Shahsavari, R.; Tour, J. M. Flash Graphene from Plastic Waste. ACS Nano 2020, 14 (11), 15595–15604.(175) Li, L.; Liu, C.; Liu, S.; Wang, J.; Han, J.; Chan, T.-S.; Li, Y.; Hu, Z.; Shao, Q.; Zhang, Q.; et al. Phase Engineering of a Ruthenium Nanostructure toward High-Performance Bifunctional Hydrogen Catalysis. ACS Nano 2022, 16 (9), 14885–14894.(176) Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. J. Am. Chem. Soc. 2013, 135 (15), 5493–5496.(177) Axet, M. R.; Philippot, K. Catalysis with Colloidal Ruthenium Nanoparticles. Chem. Rev. 2020, 120 (2), 1085–1145.(178) Wei, B.; Xia, Y.; Chen, S.; Wang, H. L. Modified Separator with Nitrogen-Doped High-Graphitized Carbon for Lithium-Sulfur Batteries. Electroanalysis 2022, 1–7.(179) Gammer, C.; Mangler, C.; Rentenberger, C.; Karnthaler, H. P. Quantitative Local Profile Analysis of Nanomaterials by Electron Diffraction. Scr. Mater. 2010, 63 (3), 312–315.(180) Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured Metal Phosphides: From Controllable Synthesis to Sustainable Catalysis. Chem. Soc. Rev. 2021, 50 (13), 7539–7586.(181) Liu, Y.; McCue, A. J.; Li, D. Metal Phosphides and Sulfides in Heterogeneous Catalysis: Electronic and Geometric Effects. ACS Catal. 2021, 11 (15), 9102–9127.(182) Prins, R.; Bussell, M. E. Metal Phosphides: Preparation, Characterization and Catalytic Reactivity. Catal. Letters 2012, 142 (12), 1413–1436.(183) Oyama, S. T.; Gott, T.; Zhao, H.; Lee, Y. K. Transition Metal Phosphide Hydroprocessing Catalysts: A Review. Catal. Today 2009, 143 (1–2), 94–107.(184) Yang, C.; Cui, M.; Li, N.; Liu, Z.; Hwang, S.; Xie, H.; Wang, X.; Kuang, Y.; Jiao, M.; Su, D.; et al. In Situ Iron Coating on Nanocatalysts for Efficient and Durable Oxygen Evolution Reaction. Nano Energy 2019, 63 (June), 1–8.(185) Du, H.; Du, Z.; Wang, T.; Li, B.; He, S.; Wang, K.; Xie, L.; Ai, W.; Huang, W. Unlocking Interfacial Electron Transfer of Ruthenium Phosphides by Homologous Core–Shell Design toward Efficient Hydrogen Evolution and Oxidation. Adv. Mater. 2022, 2204624, 1–9.(186) Li, Y.; Zhang, J.; Liu, Y.; Qian, Q.; Li, Z.; Zhu, Y.; Zhang, G. Partially Exposed RuP2 Surface in Hybrid Structure Endows Its Bifunctionality for Hydrazine Oxidation and Hydrogen Evolution Catalysis. Sci. Adv. 2020, 6 (44).(187) Yu, J.; Guo, Y.; She, S.; Miao, S.; Ni, M.; Zhou, W.; Liu, M.; Shao, Z. Bigger Is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Adv. Mater. 2018, 30 (39), 1–10.(188) Pu, Z.; Ya, X.; Amiinu, I. S.; Tu, Z.; Liu, X.; Li, W.; Mu, S. Ultrasmall Tungsten Phosphide Nanoparticles Embedded in Nitrogen-Doped Carbon as a Highly Active and Stable Hydrogen-Evolution Electrocatalyst. J. Mater. Chem. A 2016, 4 (40), 15327–15332.(189) Fei, H.; Yang, Y.; Fan, X.; Wang, G.; Ruan, G.; Tour, J. M. Tungsten-Based Porous Thin-Films for Electrocatalytic Hydrogen Generation. J. Mater. Chem. A 2015, 3 (11), 5798–5804. (190) Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative Measurement of Displacement and Strain Fields from HREM Micrographs. Ultramicroscopy 1998, 74 (3), 131–146.(191) Niu, S.; Li, S.; Du, Y.; Han, X.; Xu, P. How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Letters. 2020, pp 1083–1087.(192) Shah, A. H.; Zhang, Z.; Huang, Z.; Wang, S.; Zhong, G.; Wan, C.; Alexandrova, A. N.; Huang, Y.; Duan, X. The Role of Alkali Metal Cations and Platinum-Surface Hydroxyl in the Alkaline Hydrogen Evolution Reaction. Nat. Catal. 2022, 5 (10), 923–933.(193) He, Q.; Zhou, Y.; Shou, H.; Wang, X.; Zhang, P.; Xu, W.; Qiao, S.; Wu, C.; Liu, H.; Liu, D.; et al. Synergic Reaction Kinetics over Adjacent Ruthenium Sites for Superb Hydrogen Generation in Alkaline Media. Adv. Mater. 2022, 34 (20), 1–9.(194) Jiang, K.; Liu, B.; Luo, M.; Ning, S.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. Single Platinum Atoms Embedded in Nanoporous Cobalt Selenide as Electrocatalyst for Accelerating Hydrogen Evolution Reaction. Nat. Commun. 2019, 10 (1), 1–9.(195) Cuenya, B. R. Synthesis and Catalytic Properties of Metal Nanoparticles: Size, Shape, Support, Composition, and Oxidation State Effects. Thin Solid Films 2010, 518 (12), 3127–3150.(196) Liu, S.; Hu, Z.; Wu, Y.; Zhang, J.; Zhang, Y.; Cui, B.; Liu, C.; Hu, S.; Zhao, N.; Han, X.; et al. Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Adv. Mater. 2020, 32 (48), 1–8.(197) Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D.; et al. Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science (80-. ). 2016, 354 (6318), 1410–1414.(198) Wang, L.; Zeng, Z.; Gao, W.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X.; Wang, C.; Greeley, J. Tunable Intrinsic Strain in Two-Dimensional Transition Metal Electrocatalysts. Science (80-. ). 2019, 363 (6429), 870–874.(199) Luo, M.; Guo, S. Strain-Controlled Electrocatalysis on Multimetallic Nanomaterials. Nat. Rev. Mater. 2017, 2 (September), 1–14.(200) De Pablo, J. J.; Jones, B.; Kovacs, C. L.; Ozolins, V.; Ramirez, A. P. The Materials Genome Initiative, the Interplay of Experiment, Theory and Computation. Curr. Opin. Solid State Mater. Sci. 2014, 18 (2), 99–117.(201) de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L. Q.; Moore, J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.; et al. New Frontiers for the Materials Genome Initiative. npj Comput. Mater. 2019, 5 (1), 1–23.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/575771
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Xia Y. Nanoparticles with non-equilibrium structures synthesized by physical ways[D]. The UK. University of Birmingham,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11856005-夏雨 -材料科学与工程(19926KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[夏雨]的文章
百度学术
百度学术中相似的文章
[夏雨]的文章
必应学术
必应学术中相似的文章
[夏雨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。