中文版 | English
题名

Comparative Performance of Three Machine Learning Models in Predicting Influent Flow Rates and Nutrient Loads at Wastewater Treatment Plants

作者
通讯作者Tian, Yong; Zheng, Chunmiao
发表日期
2023-09-01
DOI
发表期刊
EISSN
2690-0637
摘要
Accurately predicting influent wastewater quality is vital for the efficient operation and maintenance of wastewater treatment plants (WWTPs). This study evaluated three machine learning (ML) models for predicting influent flow rates and nutrient loads of both industrial and domestic wastewaters in WWTPs. These predictions were based on meteorological data and the population migration patterns. The models?random forest, extra trees, and gradient boosting regressor?were successfully applied to three full-scale WWTPs in Shenzhen, China. All the models demonstrated robust performance in predicting influent flow rate, ammoniacal nitrogen (NH3-N), and total nitrogen (TN). Feature importance analysis revealed that the average precipitation over the past n days and population migration were the most influential factors for predicting influent flow rate. Conversely, human activities have a greater impact on pollutant concentrations. Scenario analyses indicated that precipitation contributed to approximately 5%-10% of the wastewater influent, while groundwater infiltration accounted for around 20%. Overall, this study provides a model framework for forecasting wastewater loads using meteorological and population migration data, setting the groundwork for smart management in WWTPs.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Environmental Sciences & Ecology ; Water Resources
WOS类目
Environmental Sciences ; Water Resources
WOS记录号
WOS:001071976700001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/575806
专题工学院_环境科学与工程学院
作者单位
1.Hong Kong Baptist Univ, Dept Chem, State Key Lab Environm & Biol Anal, Hong Kong 999077, Peoples R China
2.Southern Univ Sci & Technol, State Environm Protect Key Lab Integrated Surface, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Guangdong Prov Key Lab Soil & Groundwater Pollut, Shenzhen 518055, Peoples R China
4.Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Wei, Xiaoou,Yu, Jiang,Tian, Yong,et al. Comparative Performance of Three Machine Learning Models in Predicting Influent Flow Rates and Nutrient Loads at Wastewater Treatment Plants[J]. ACS ES&T WATER,2023.
APA
Wei, Xiaoou,Yu, Jiang,Tian, Yong,Ben, Yujie,Cai, Zongwei,&Zheng, Chunmiao.(2023).Comparative Performance of Three Machine Learning Models in Predicting Influent Flow Rates and Nutrient Loads at Wastewater Treatment Plants.ACS ES&T WATER.
MLA
Wei, Xiaoou,et al."Comparative Performance of Three Machine Learning Models in Predicting Influent Flow Rates and Nutrient Loads at Wastewater Treatment Plants".ACS ES&T WATER (2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei, Xiaoou]的文章
[Yu, Jiang]的文章
[Tian, Yong]的文章
百度学术
百度学术中相似的文章
[Wei, Xiaoou]的文章
[Yu, Jiang]的文章
[Tian, Yong]的文章
必应学术
必应学术中相似的文章
[Wei, Xiaoou]的文章
[Yu, Jiang]的文章
[Tian, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。