中文版 | English
题名

Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence

作者
通讯作者Lyu, Erli
发表日期
2023-09-01
DOI
发表期刊
EISSN
2072-4292
卷号15期号:18
摘要
Due to the fact that point clouds are always corrupted by significant noise and large transformations, aligning two point clouds by deep neural networks is still challenging. This paper presents a semi-supervised point cloud registration (PCR) method for accurately estimating point correspondences and handling large transformations using limited prior datasets. Firstly, a modified autoencoder is introduced as the feature extraction module to extract the distinctive and robust features for the downstream registration task. Unlike optimization-based pairwise PCR strategies, the proposed method treats two point clouds as two implementations of a Gaussian mixture model (GMM), which we call latent GMM. Based on the above assumption, two point clouds can be regarded as two probability distributions. Hence, the PCR of two point clouds can be approached by minimizing the KL divergence between these two probability distributions. Then, the correspondence between the point clouds and the latent GMM components is estimated using the augmented regression network. Finally, the parameters of GMM can be updated by the correspondence and the transformation matrix can be computed by employing the weighted singular value decomposition (SVD) method. Extensive experiments conducted on both synthetic and real-world data validate the superior performance of the proposed method compared to state-of-the-art registration methods. These experiments also highlight the method's superiority in terms of accuracy, robustness, and generalization.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目
Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号
WOS:001074395700001
出版者
EI入藏号
20234014835081
EI主题词
Gaussian distribution ; Large dataset ; Learning systems ; Linear transformations ; Singular value decomposition
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Mathematics:921 ; Mathematical Transformations:921.3 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/575811
专题工学院_电子与电气工程系
作者单位
1.Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 02138, Peoples R China
2.Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
3.UCL, Dept Med Phys & Biomed Engn, London WC1E 6BT, England
4.Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
5.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
6.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhengyan,Lyu, Erli,Min, Zhe,et al. Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence[J]. REMOTE SENSING,2023,15(18).
APA
Zhang, Zhengyan,Lyu, Erli,Min, Zhe,Zhang, Ang,Yu, Yue,&Meng, Max Q. -H..(2023).Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence.REMOTE SENSING,15(18).
MLA
Zhang, Zhengyan,et al."Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence".REMOTE SENSING 15.18(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhengyan]的文章
[Lyu, Erli]的文章
[Min, Zhe]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhengyan]的文章
[Lyu, Erli]的文章
[Min, Zhe]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhengyan]的文章
[Lyu, Erli]的文章
[Min, Zhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。