题名 | Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence |
作者 | |
通讯作者 | Lyu, Erli |
发表日期 | 2023-09-01
|
DOI | |
发表期刊 | |
EISSN | 2072-4292
|
卷号 | 15期号:18 |
摘要 | Due to the fact that point clouds are always corrupted by significant noise and large transformations, aligning two point clouds by deep neural networks is still challenging. This paper presents a semi-supervised point cloud registration (PCR) method for accurately estimating point correspondences and handling large transformations using limited prior datasets. Firstly, a modified autoencoder is introduced as the feature extraction module to extract the distinctive and robust features for the downstream registration task. Unlike optimization-based pairwise PCR strategies, the proposed method treats two point clouds as two implementations of a Gaussian mixture model (GMM), which we call latent GMM. Based on the above assumption, two point clouds can be regarded as two probability distributions. Hence, the PCR of two point clouds can be approached by minimizing the KL divergence between these two probability distributions. Then, the correspondence between the point clouds and the latent GMM components is estimated using the augmented regression network. Finally, the parameters of GMM can be updated by the correspondence and the transformation matrix can be computed by employing the weighted singular value decomposition (SVD) method. Extensive experiments conducted on both synthetic and real-world data validate the superior performance of the proposed method compared to state-of-the-art registration methods. These experiments also highlight the method's superiority in terms of accuracy, robustness, and generalization. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
WOS研究方向 | Environmental Sciences & Ecology
; Geology
; Remote Sensing
; Imaging Science & Photographic Technology
|
WOS类目 | Environmental Sciences
; Geosciences, Multidisciplinary
; Remote Sensing
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:001074395700001
|
出版者 | |
EI入藏号 | 20234014835081
|
EI主题词 | Gaussian distribution
; Large dataset
; Learning systems
; Linear transformations
; Singular value decomposition
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Mathematics:921
; Mathematical Transformations:921.3
; Probability Theory:922.1
; Mathematical Statistics:922.2
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/575811 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 02138, Peoples R China 2.Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China 3.UCL, Dept Med Phys & Biomed Engn, London WC1E 6BT, England 4.Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China 5.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China 6.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Zhang, Zhengyan,Lyu, Erli,Min, Zhe,et al. Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence[J]. REMOTE SENSING,2023,15(18).
|
APA |
Zhang, Zhengyan,Lyu, Erli,Min, Zhe,Zhang, Ang,Yu, Yue,&Meng, Max Q. -H..(2023).Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence.REMOTE SENSING,15(18).
|
MLA |
Zhang, Zhengyan,et al."Robust Semi-Supervised Point Cloud Registration via Latent GMM-Based Correspondence".REMOTE SENSING 15.18(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论