中文版 | English
题名

Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring

作者
通讯作者Lin, Yuanjing; Li, Kwai Hei
发表日期
2023-09-15
DOI
发表期刊
ISSN
1530-6984
EISSN
1530-6992
卷号23期号:23页码:10674-10681
摘要

Respiratory pattern is one of the most crucial indicators for accessing human health, but there has been limited success in implementing fast-responsive, affordable, and miniaturized platforms with the capability for smart recognition. Herein, a fully integrated and flexible patch for wireless intelligent respiratory monitoring based on a lamellar porous film functionalized GaN optoelectronic chip with a desirable response to relative humidity (RH) variation is reported. The submillimeter-sized GaN device exhibits a high sensitivity of 13.2 nA/%RH at 2-70%RH and 61.5 nA/%RH at 70-90%RH, and a fast response/recovery time of 12.5 s/6 s. With the integration of a wireless data transmission module and the assistance of machine learning based on 1-D convolutional neural networks, seven breathing patterns are identified with an overall classification accuracy of >96%. This integrated and flexible on-mask sensing platform successfully demonstrates real-time and intelligent respiratory monitoring capability, showing great promise for practical healthcare applications.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:001068499300001
出版者
EI入藏号
20234314960346
EI主题词
Convolutional neural networks ; III-V semiconductors ; Patient monitoring
EI分类号
Medicine and Pharmacology:461.6 ; Semiconducting Materials:712.1
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85174689334
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/575815
专题工学院_深港微电子学院
作者单位
Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
第一作者单位深港微电子学院
通讯作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Liu, Zecong,Su, Junjie,Zhou, Kemeng,et al. Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring[J]. NANO LETTERS,2023,23(23):10674-10681.
APA
Liu, Zecong,Su, Junjie,Zhou, Kemeng,Yu, Binlu,Lin, Yuanjing,&Li, Kwai Hei.(2023).Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring.NANO LETTERS,23(23),10674-10681.
MLA
Liu, Zecong,et al."Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring".NANO LETTERS 23.23(2023):10674-10681.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Zecong]的文章
[Su, Junjie]的文章
[Zhou, Kemeng]的文章
百度学术
百度学术中相似的文章
[Liu, Zecong]的文章
[Su, Junjie]的文章
[Zhou, Kemeng]的文章
必应学术
必应学术中相似的文章
[Liu, Zecong]的文章
[Su, Junjie]的文章
[Zhou, Kemeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。