题名 | Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring |
作者 | |
通讯作者 | Lin, Yuanjing; Li, Kwai Hei |
发表日期 | 2023-09-15
|
DOI | |
发表期刊 | |
ISSN | 1530-6984
|
EISSN | 1530-6992
|
卷号 | 23期号:23页码:10674-10681 |
摘要 | Respiratory pattern is one of the most crucial indicators for accessing human health, but there has been limited success in implementing fast-responsive, affordable, and miniaturized platforms with the capability for smart recognition. Herein, a fully integrated and flexible patch for wireless intelligent respiratory monitoring based on a lamellar porous film functionalized GaN optoelectronic chip with a desirable response to relative humidity (RH) variation is reported. The submillimeter-sized GaN device exhibits a high sensitivity of 13.2 nA/%RH at 2-70%RH and 61.5 nA/%RH at 70-90%RH, and a fast response/recovery time of 12.5 s/6 s. With the integration of a wireless data transmission module and the assistance of machine learning based on 1-D convolutional neural networks, seven breathing patterns are identified with an overall classification accuracy of >96%. This integrated and flexible on-mask sensing platform successfully demonstrates real-time and intelligent respiratory monitoring capability, showing great promise for practical healthcare applications. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Multidisciplinary
; Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:001068499300001
|
出版者 | |
EI入藏号 | 20234314960346
|
EI主题词 | Convolutional neural networks
; III-V semiconductors
; Patient monitoring
|
EI分类号 | Medicine and Pharmacology:461.6
; Semiconducting Materials:712.1
|
ESI学科分类 | MATERIALS SCIENCE
|
Scopus记录号 | 2-s2.0-85174689334
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/575815 |
专题 | 工学院_深港微电子学院 |
作者单位 | Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China |
第一作者单位 | 深港微电子学院 |
通讯作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Liu, Zecong,Su, Junjie,Zhou, Kemeng,et al. Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring[J]. NANO LETTERS,2023,23(23):10674-10681.
|
APA |
Liu, Zecong,Su, Junjie,Zhou, Kemeng,Yu, Binlu,Lin, Yuanjing,&Li, Kwai Hei.(2023).Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring.NANO LETTERS,23(23),10674-10681.
|
MLA |
Liu, Zecong,et al."Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring".NANO LETTERS 23.23(2023):10674-10681.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论