题名 | A novel deep-learning image condition for locating earthquake |
作者 | |
通讯作者 | Zhang, Wei |
发表日期 | 2023-09-18
|
DOI | |
发表期刊 | |
ISSN | 0956-540X
|
EISSN | 1365-246X
|
卷号 | 235期号:3页码:2168-2178 |
摘要 | Migration-based earthquake location methods may encounter the polarity reversal issue due to the non-explosive components of seismic sources, leading to an unfocused migration image. Such a problem usually makes it difficult to accurately retrieve the optimal location from the migrated source image. In this study, by taking advantage of the general pattern recognition ability of the convolutional neural network, we propose a novel deep-learning image condition (DLIC) to address this issue. The proposed DLIC measures the goodness of waveform alignments for both P and S waves, and it follows the geophysical principle of seismic imaging that the best-aligned waveforms represent fully a best-imaged source location. A synthetic test shows that the DLIC can effectively overcome the polarity reversal issues. Real data applications to southern California show that the DLIC can enhance the focusing of the migrated source image over the classic source scanning algorithm. Further tests show that the DLIC applies to continuous seismic data, to regions with few previously recorded earthquakes, and has the potential to locate small earthquakes. The proposed DLIC shall benefit the migration-based source location methods. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | We thank the financial support from the National Key Ramp;amp;D Program of China (grant no. 2021YFC3000703-05), the National Natural Science Foundation of China (grant nos 42104047 and U1901602), the Guangdong Provincial Key Laboratory of Geophysical High[2021YFC3000703-05]
; National Key Ramp;amp;D Program of China["42104047","U1901602"]
; National Natural Science Foundation of China[2022B1212010002]
; Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology[2019QN01G801]
; Guangdong Provincial Pearl River Talents Program[KQTD20170810111725321]
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:001072675800001
|
出版者 | |
EI入藏号 | 20234314949836
|
EI主题词 | Convolutional neural networks
; Deep neural networks
; Earthquakes
; Fuzzy neural networks
; Image enhancement
; Location
; Pattern recognition
; Shear waves
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Seismology:484
; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Artificial Intelligence:723.4
; Mechanics:931.1
|
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85174587654
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/575830 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Ocean Univ China, Coll Marine Geosci, Key Lab Submarine Geosci & Prospecting Tech, MOE, Qingdao 266100, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China 4.Univ Sci & Technol China, Dept Geophys, Hefei 230026, Peoples R China |
第一作者单位 | 南方科技大学; 地球与空间科学系 |
通讯作者单位 | 南方科技大学; 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Kuang, Wenhuan,Zhang, Jie,Zhang, Wei. A novel deep-learning image condition for locating earthquake[J]. GEOPHYSICAL JOURNAL INTERNATIONAL,2023,235(3):2168-2178.
|
APA |
Kuang, Wenhuan,Zhang, Jie,&Zhang, Wei.(2023).A novel deep-learning image condition for locating earthquake.GEOPHYSICAL JOURNAL INTERNATIONAL,235(3),2168-2178.
|
MLA |
Kuang, Wenhuan,et al."A novel deep-learning image condition for locating earthquake".GEOPHYSICAL JOURNAL INTERNATIONAL 235.3(2023):2168-2178.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论