中文版 | English
题名

A novel deep-learning image condition for locating earthquake

作者
通讯作者Zhang, Wei
发表日期
2023-09-18
DOI
发表期刊
ISSN
0956-540X
EISSN
1365-246X
卷号235期号:3页码:2168-2178
摘要
Migration-based earthquake location methods may encounter the polarity reversal issue due to the non-explosive components of seismic sources, leading to an unfocused migration image. Such a problem usually makes it difficult to accurately retrieve the optimal location from the migrated source image. In this study, by taking advantage of the general pattern recognition ability of the convolutional neural network, we propose a novel deep-learning image condition (DLIC) to address this issue. The proposed DLIC measures the goodness of waveform alignments for both P and S waves, and it follows the geophysical principle of seismic imaging that the best-aligned waveforms represent fully a best-imaged source location. A synthetic test shows that the DLIC can effectively overcome the polarity reversal issues. Real data applications to southern California show that the DLIC can enhance the focusing of the migrated source image over the classic source scanning algorithm. Further tests show that the DLIC applies to continuous seismic data, to regions with few previously recorded earthquakes, and has the potential to locate small earthquakes. The proposed DLIC shall benefit the migration-based source location methods.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
We thank the financial support from the National Key Ramp;amp;D Program of China (grant no. 2021YFC3000703-05), the National Natural Science Foundation of China (grant nos 42104047 and U1901602), the Guangdong Provincial Key Laboratory of Geophysical High[2021YFC3000703-05] ; National Key Ramp;amp;D Program of China["42104047","U1901602"] ; National Natural Science Foundation of China[2022B1212010002] ; Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology[2019QN01G801] ; Guangdong Provincial Pearl River Talents Program[KQTD20170810111725321]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001072675800001
出版者
EI入藏号
20234314949836
EI主题词
Convolutional neural networks ; Deep neural networks ; Earthquakes ; Fuzzy neural networks ; Image enhancement ; Location ; Pattern recognition ; Shear waves
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Seismology:484 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Mechanics:931.1
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85174587654
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/575830
专题理学院_地球与空间科学系
作者单位
1.Ocean Univ China, Coll Marine Geosci, Key Lab Submarine Geosci & Prospecting Tech, MOE, Qingdao 266100, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
4.Univ Sci & Technol China, Dept Geophys, Hefei 230026, Peoples R China
第一作者单位南方科技大学;  地球与空间科学系
通讯作者单位南方科技大学;  地球与空间科学系
推荐引用方式
GB/T 7714
Kuang, Wenhuan,Zhang, Jie,Zhang, Wei. A novel deep-learning image condition for locating earthquake[J]. GEOPHYSICAL JOURNAL INTERNATIONAL,2023,235(3):2168-2178.
APA
Kuang, Wenhuan,Zhang, Jie,&Zhang, Wei.(2023).A novel deep-learning image condition for locating earthquake.GEOPHYSICAL JOURNAL INTERNATIONAL,235(3),2168-2178.
MLA
Kuang, Wenhuan,et al."A novel deep-learning image condition for locating earthquake".GEOPHYSICAL JOURNAL INTERNATIONAL 235.3(2023):2168-2178.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kuang, Wenhuan]的文章
[Zhang, Jie]的文章
[Zhang, Wei]的文章
百度学术
百度学术中相似的文章
[Kuang, Wenhuan]的文章
[Zhang, Jie]的文章
[Zhang, Wei]的文章
必应学术
必应学术中相似的文章
[Kuang, Wenhuan]的文章
[Zhang, Jie]的文章
[Zhang, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。