中文版 | English
题名

Level-Wise Band-Partition-Based Hierarchical Representation Residual Feature Learning for Hyperspectral Target Detection

作者
DOI
发表日期
2023
会议名称
IEEE 19th International Conference on Automation Science and Engineering (CASE)
ISSN
2161-8070
ISBN
979-8-3503-2070-1
会议录名称
卷号
2023-August
页码
1-5
会议日期
26-30 Aug. 2023
会议地点
Auckland, New Zealand
摘要
This paper proposes a Level-wise Band-partition-based Hierarchical Representation residual Feature (LBHRF) learning method for hyperspectral target detection (HTD). Specifically, the LBHRR method proposes to partition and fuse different levels of sub-band spectra combinations, and take full advantages of the discriminate information in representation residuals from different levels of band-partition. First, the original full spectral bands are partitioned in a parallel level-wise manner to obtain the augmented representation residual feature through level-wise band-partition-based representation residual learning, such that the global spectral integrity as well as the contextual information of local adjacent sub-bands can are flexibly fused. The SoftMax transformation, pooling operation, and augmented representation residual feature reuse among different layers are introduced in cascade to enhance the discriminative ability of the nonlinear and discriminant hierarchical representation residual features of the method. Finally, a hierarchical representation residual feature-based HTD method is developed in an efficient stepwise learning manner, instead of back-propagation optimization. Experimental results on several HSI datasets demonstrate that the proposed model can yield promising detection performance in comparison to some state-of-the-art counterparts.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20234314929551
EI主题词
Feature Extraction ; Learning Systems ; Radar Target Recognition
EI分类号
Radar Systems And Equipment:716.2 ; Artificial Intelligence:723.4
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10260558
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582702
专题南方科技大学
作者单位
1.School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
2.Sifakis Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
3.Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen, China
推荐引用方式
GB/T 7714
Tan Guo,Jiakun Guo,Dachuan Li,et al. Level-Wise Band-Partition-Based Hierarchical Representation Residual Feature Learning for Hyperspectral Target Detection[C],2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tan Guo]的文章
[Jiakun Guo]的文章
[Dachuan Li]的文章
百度学术
百度学术中相似的文章
[Tan Guo]的文章
[Jiakun Guo]的文章
[Dachuan Li]的文章
必应学术
必应学术中相似的文章
[Tan Guo]的文章
[Jiakun Guo]的文章
[Dachuan Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。