中文版 | English
题名

Deep Learning based Defect Detection Algorithm for Solar Panels

作者
DOI
发表日期
2023
ISSN
2835-3366
ISBN
979-8-3503-0733-7
会议录名称
页码
438-443
会议日期
19-19 Aug. 2023
会议地点
Beijing, China
摘要
Defect detection of solar panels plays an essential role in guaranteeing product quality within automated production lines. However, traditional manual inspection of solar panel defects suffers from low efficiency. This paper proposes an enhanced YOLOv5 algorithm (EL-YOLOv5) fused with the CBAM hybrid attention module to ensure product quality. The algorithm focuses on detecting five common types of defects that frequently appear on photovoltaic production lines, namely hidden cracks, scratches, broken grids, black spots, and short circuits. This study utilizes publicly available solar panel datasets, as well as datasets collected from actual photovoltaic production lines. These datasets are annotated accordingly and used to train the proposed algorithm. The experimental results demonstrate that the proposed algorithm achieves good performance on both the public and actual solar panel defect datasets. Particularly in actual datasets, where defect features are often less apparent and defects are smaller in size, the proposed algorithm can still detect even minor black spots.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20234214914908
EI主题词
Deep learning ; Defects ; Quality control ; Signal detection ; Solar concentrators ; Solar power generation
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Solar Power:615.2 ; Solar Energy and Phenomena:657.1 ; Solar Cells:702.3 ; Information Theory and Signal Processing:716.1 ; Quality Assurance and Control:913.3 ; Materials Science:951
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10261859
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582703
专题工学院_电子与电气工程系
作者单位
1.Department of Key Lab of Industrial Computer Control Engineering, Hebei Province Yanshan University, Qinhuangdao, China
2.Department of Computing Science, University of Alberta, Edmonton, AB, Canada
3.Hebei Baoding Jiasheng Photovoltaic Technology Co., Ltd.
4.Department of Institute for Medical Science and Technology (IMSaT), University of Dundee, United Kingdom
5.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Jiaqi Li,Hongxu Li,Yifan Wu,et al. Deep Learning based Defect Detection Algorithm for Solar Panels[C],2023:438-443.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiaqi Li]的文章
[Hongxu Li]的文章
[Yifan Wu]的文章
百度学术
百度学术中相似的文章
[Jiaqi Li]的文章
[Hongxu Li]的文章
[Yifan Wu]的文章
必应学术
必应学术中相似的文章
[Jiaqi Li]的文章
[Hongxu Li]的文章
[Yifan Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。