中文版 | English
题名

Learning to Hybrid Offload in Space-Air-Ground Integrated Mobile Edge Computing for IoT Networks

作者
DOI
发表日期
2023
ISSN
2379-7711
ISBN
979-8-3503-1520-2
会议录名称
页码
836-841
会议日期
11-14 July 2023
会议地点
Qinhuangdao, China
摘要
Recently, space-air-ground integrated network (SAGIN) has garnered considerable interest from both academia and industry due to its broad-coverage and high-reliability features collaborated by low earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs), and ground devices. In the meantime, the integration of SAGIN with other emerging communication technologies is promising for research and applications. Mobile edge computing (MEC) enables the resource limited devices, i.e., the Internet of things (IoTs) devices, to offload their data packet to the data processing center for computing. In this paper, a space-air-ground integrated MEC network is studied, where the UAV and satellite are capable for providing computing services to IoT devices. All IoT devices could split their data packet for local computing and offloading. The IoT devices can communicate with the UAV by active mode and/or passive mode through backscatter communication. The utility efficiency maximization problem that jointly considers the data volume, time latency, and energy consumption is formulated. As the problem is nonconvex and can not be addressed by conventional methods, a deep reinforcement learning based method is proposed to acquire the data offloading policy. Numerous numerical results confirm the effectiveness and robustness of the proposed method compared to other benchmark methods.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20234314959606
EI主题词
Antennas ; Backscattering ; Budget control ; Data handling ; Deep learning ; Earth (planet) ; Energy efficiency ; Energy utilization ; Internet of things ; Mobile edge computing ; Numerical methods ; Orbits ; Unmanned aerial vehicles (UAV)
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Energy Conservation:525.2 ; Energy Utilization:525.3 ; Aircraft, General:652.1 ; Data Communication, Equipment and Techniques:722.3 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Numerical Methods:921.6
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10256477
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582705
专题南方科技大学
作者单位
1.Guangdong Provincial Key Laboratory of Future Networks of Intelligence, School of Science and Engineering (SSE), the Future Network of Intelligence Institute (FNii), the Chinese University of Hong Kong, Shenzhen Institute of Advanced Technology (SlAT), Chinese Academy of Sciences, Shenzhen, China
2.SIAT, Chinese Academy of Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China
3.SSE, the FNii, and the Guangdong Provincial Key Laboratory of Future Networks of Intelligence, the Chinese University of Hong Kong, Shenzhen, China
4.SUSTech, Shenzhen, China
5.SIAT, Chinese Academy of Sciences, Shenzhen, China
6.School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
推荐引用方式
GB/T 7714
Xuhui Zhang,Wenchao Liu,Huijun Xing,et al. Learning to Hybrid Offload in Space-Air-Ground Integrated Mobile Edge Computing for IoT Networks[C],2023:836-841.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xuhui Zhang]的文章
[Wenchao Liu]的文章
[Huijun Xing]的文章
百度学术
百度学术中相似的文章
[Xuhui Zhang]的文章
[Wenchao Liu]的文章
[Huijun Xing]的文章
必应学术
必应学术中相似的文章
[Xuhui Zhang]的文章
[Wenchao Liu]的文章
[Huijun Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。