中文版 | English
题名

Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables

作者
通讯作者Genghui Li; Zhenkun Wang
共同第一作者Lindong Xie
DOI
发表日期
2023
会议名称
The 5th International Conference on Data-driven Optimization of Complex Systems
ISBN
979-8-3503-9353-8
会议录名称
页码
1-7
会议日期
22-24 Sept. 2023
会议地点
Tianjin, China
摘要
The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitation, a dual-state-driven evolutionary optimization (called DSDEO), integrating a surrogate-assisted mixed-variable evolutionary optimization stage (MVEOS) and a surrogate-assisted continuous-variable evolutionary optimization stage (CVEOS), is proposed in this paper. Specifically, MVEOS employs global and local search to enhance the exploration and exploitation of the mixed-variable space. Global and local searches are alternately executed if one search fails to yield a better solution. CVEOS utilizes a continuous-improvement strategy to refine the continuous variables of the best solution obtained so far. Experimental results demonstrate the advantages of DSDEO compared to some state-of-the-art SAEAs on many benchmark problems.
关键词
学校署名
第一 ; 通讯
相关链接[IEEE记录]
收录类别
EI入藏号
20234815141006
EI主题词
Combinatorial optimization
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10294894
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582715
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, P.R. China
2.Department of Computer Science and Engineering, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, P.R. China
第一作者单位系统设计与智能制造学院
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Lindong Xie,Genghui Li,Kangnian Lin,et al. Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables[C],2023:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lindong Xie]的文章
[Genghui Li]的文章
[Kangnian Lin]的文章
百度学术
百度学术中相似的文章
[Lindong Xie]的文章
[Genghui Li]的文章
[Kangnian Lin]的文章
必应学术
必应学术中相似的文章
[Lindong Xie]的文章
[Genghui Li]的文章
[Kangnian Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。