题名 | Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables |
作者 | |
通讯作者 | Genghui Li; Zhenkun Wang |
共同第一作者 | Lindong Xie |
DOI | |
发表日期 | 2023
|
会议名称 | The 5th International Conference on Data-driven Optimization of Complex Systems
|
ISBN | 979-8-3503-9353-8
|
会议录名称 | |
页码 | 1-7
|
会议日期 | 22-24 Sept. 2023
|
会议地点 | Tianjin, China
|
摘要 | The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitation, a dual-state-driven evolutionary optimization (called DSDEO), integrating a surrogate-assisted mixed-variable evolutionary optimization stage (MVEOS) and a surrogate-assisted continuous-variable evolutionary optimization stage (CVEOS), is proposed in this paper. Specifically, MVEOS employs global and local search to enhance the exploration and exploitation of the mixed-variable space. Global and local searches are alternately executed if one search fails to yield a better solution. CVEOS utilizes a continuous-improvement strategy to refine the continuous variables of the best solution obtained so far. Experimental results demonstrate the advantages of DSDEO compared to some state-of-the-art SAEAs on many benchmark problems. |
关键词 | |
学校署名 | 第一
; 通讯
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20234815141006
|
EI主题词 | Combinatorial optimization
|
EI分类号 | Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Optimization Techniques:921.5
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10294894 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/582715 |
专题 | 工学院_系统设计与智能制造学院 工学院_计算机科学与工程系 |
作者单位 | 1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, P.R. China 2.Department of Computer Science and Engineering, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, P.R. China |
第一作者单位 | 系统设计与智能制造学院 |
通讯作者单位 | 系统设计与智能制造学院; 计算机科学与工程系 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Lindong Xie,Genghui Li,Kangnian Lin,et al. Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables[C],2023:1-7.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论