中文版 | English
题名

Deep Learning-Based Cramér-Rao Bound Optimization for Integrated Sensing and Communication in Vehicular Networks

作者
DOI
发表日期
2023
ISSN
1948-3244
ISBN
978-1-6654-9627-8
会议录名称
页码
646-650
会议日期
25-28 Sept. 2023
会议地点
Shanghai, China
摘要
Integrated sensing and communication (ISAC) is capable of achieving both heterogeneous connectivity and highly accurate sensing performance in vehicular networks through effective beamforming design at the roadside unit (RSU). In the traditional paradigm, the first step is predicting the kinematic parameters of each vehicle and then designing the optimal beamforming matrix, which requires excessively large computational complexity. To tackle this issue, this paper proposes a deep learning (DL)-based method that bypasses explicit channel estimation and directly optimizes beamformers to minimize the Cramér-Rao Bound (CRB) of radar sensing while guaranteeing an acceptable level of achievable communication rate. This is achieved by leveraging the convolutional and long short-term memory (CLSTM) neural networks to implicitly capture the features of historical channels, thereby improving the ISAC system performance. Finally, simulation results demonstrate that the proposed approach can satisfy the pre-defined requirement of achievable rate, while simultaneously achieving sensing performance that approaches the perfect beamforming bound.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20234915163075
EI主题词
Brain ; Convolution ; Cramer-Rao bounds ; Long short-term memory
EI分类号
Biomedical Engineering:461.1 ; Electromagnetic Waves in Relation to Various Structures:711.2 ; Information Theory and Signal Processing:716.1 ; Mathematical Statistics:922.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304366
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582718
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.The Hong Kong Polytechnic University, Hong Kong, SAR, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Xiaoqi Zhang,Weijie Yuan,Chang Liu,et al. Deep Learning-Based Cramér-Rao Bound Optimization for Integrated Sensing and Communication in Vehicular Networks[C],2023:646-650.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiaoqi Zhang]的文章
[Weijie Yuan]的文章
[Chang Liu]的文章
百度学术
百度学术中相似的文章
[Xiaoqi Zhang]的文章
[Weijie Yuan]的文章
[Chang Liu]的文章
必应学术
必应学术中相似的文章
[Xiaoqi Zhang]的文章
[Weijie Yuan]的文章
[Chang Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。