题名 | Deep Learning-Based Cramér-Rao Bound Optimization for Integrated Sensing and Communication in Vehicular Networks |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 1948-3244
|
ISBN | 978-1-6654-9627-8
|
会议录名称 | |
页码 | 646-650
|
会议日期 | 25-28 Sept. 2023
|
会议地点 | Shanghai, China
|
摘要 | Integrated sensing and communication (ISAC) is capable of achieving both heterogeneous connectivity and highly accurate sensing performance in vehicular networks through effective beamforming design at the roadside unit (RSU). In the traditional paradigm, the first step is predicting the kinematic parameters of each vehicle and then designing the optimal beamforming matrix, which requires excessively large computational complexity. To tackle this issue, this paper proposes a deep learning (DL)-based method that bypasses explicit channel estimation and directly optimizes beamformers to minimize the Cramér-Rao Bound (CRB) of radar sensing while guaranteeing an acceptable level of achievable communication rate. This is achieved by leveraging the convolutional and long short-term memory (CLSTM) neural networks to implicitly capture the features of historical channels, thereby improving the ISAC system performance. Finally, simulation results demonstrate that the proposed approach can satisfy the pre-defined requirement of achievable rate, while simultaneously achieving sensing performance that approaches the perfect beamforming bound. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20234915163075
|
EI主题词 | Brain
; Convolution
; Cramer-Rao bounds
; Long short-term memory
|
EI分类号 | Biomedical Engineering:461.1
; Electromagnetic Waves in Relation to Various Structures:711.2
; Information Theory and Signal Processing:716.1
; Mathematical Statistics:922.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304366 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/582718 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.The Hong Kong Polytechnic University, Hong Kong, SAR, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Xiaoqi Zhang,Weijie Yuan,Chang Liu,et al. Deep Learning-Based Cramér-Rao Bound Optimization for Integrated Sensing and Communication in Vehicular Networks[C],2023:646-650.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论