中文版 | English
题名

Fully Actuated System Approaches: Predictive Elimination Control for Discrete-Time Nonlinear Time-Varying Systems With Full State Constraints and Time-Varying Delays

作者
通讯作者Duan, Guangren
发表日期
2023-10-01
DOI
发表期刊
ISSN
1549-8328
EISSN
1558-0806
卷号71期号:1页码:383-396
摘要
This paper concentrates on the optimal tracking control for a discrete-time nonlinear time-varying fully-actuated system (FAS) with full state constraints and time-varying delays. An explicit analytical predictive controller is constructed by incorporating the predictive control scheme and the constraint elimination technique into FAS approaches. The proposed PEC-FAS scheme dexterously eliminates full state constraints without introducing new constraints and uncertainties, makes full use of full-actuation property to compensate the time-delay actively. Especially, it reduces the coupling degree of the states, and eliminates the nonlinearities arising from the original system and constraints elimination process simultaneously. These efforts largely improve the solvability of the strongly nonlinear and coupled optimization problem with constraints and time-delay. Meanwhile, by analytically expressing the predictive information by off-line calculation, the nonlinear optimization problem is converted into a series of linear convex optimization problems without constraints and time-delay, which fundamentally mitigates the computational burden and the design complexity compared with the previous nonlinear predictive control approaches. Theoretically, it is demonstrated that the proposed controller is recursively feasible, which also owns a recursive explicit analytical predictive controller sequence in each predictive horizon, and the tracking error system is asymptotically stable under the certain condition with predictive parameters. Finally, the simulation of a benchmark under-actuated application of a rotational translational actuator (RTAC) system, demonstrates the effectiveness and the simplicity of the proposed PEC-FAS scheme.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Science Center Program of the National Natural Science Foundation of China[62188101] ; Major Program of National Natural Science Foundation of China["61690210","61690212"] ; National Natural Science Foundation of China[62073096] ; Self-Planned Task of State KeyLaboratory of Robotics and System, Harbin Institute of Technology[SKLRS201716A]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:001092324100001
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10295562
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582773
专题南方科技大学
作者单位
1.Harbin Inst Technol, Ctr Control Theory & Guidance Technol, Harbin 150001, Peoples R China
2.Southern Univ Sci & Technol, Ctr Control Sci & Technol, Shenzhen 518055, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Wang, Xiubo,Duan, Guangren. Fully Actuated System Approaches: Predictive Elimination Control for Discrete-Time Nonlinear Time-Varying Systems With Full State Constraints and Time-Varying Delays[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS,2023,71(1):383-396.
APA
Wang, Xiubo,&Duan, Guangren.(2023).Fully Actuated System Approaches: Predictive Elimination Control for Discrete-Time Nonlinear Time-Varying Systems With Full State Constraints and Time-Varying Delays.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS,71(1),383-396.
MLA
Wang, Xiubo,et al."Fully Actuated System Approaches: Predictive Elimination Control for Discrete-Time Nonlinear Time-Varying Systems With Full State Constraints and Time-Varying Delays".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 71.1(2023):383-396.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Xiubo]的文章
[Duan, Guangren]的文章
百度学术
百度学术中相似的文章
[Wang, Xiubo]的文章
[Duan, Guangren]的文章
必应学术
必应学术中相似的文章
[Wang, Xiubo]的文章
[Duan, Guangren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。