中文版 | English
题名

Quantum walk mixing is faster than classical on periodic lattices

作者
通讯作者Dhamapurkar, Shyam
发表日期
2023-11-15
DOI
发表期刊
ISSN
0378-4371
EISSN
1873-2119
卷号630
摘要
The quantum mixing time is a critical factor affecting the efficiency of quantum sampling and algorithm performance. It refers to the minimum time required for a quantum walk to approach its limiting distribution closely and has implications across the areas of quantum computation. This work focuses on the continuous time quantum walk mixing on a regular graph, evolving according to the unitary map U = e(t (A) over bart), where the Hamiltonian (A) over bar is the normalized adjacency matrix of the graph. In [Physical Review A 76, 042306 (2007).], Richter previously showed that this walk mixes in time O(nd log (d) log (1/epsilon)) with O(log (d) log (1/epsilon.)) intermediate measurements when the graph is the d-dimensional periodic lattice Z(n)xZ(n)x...xZ(n). We extend this analysis to the periodic lattice L = Zn-1 x Zn-2 x ... x Z(nd), relaxing the assumption that n(t) are identical. We provide two quantum walks on periodic lattices that achieve faster mixing compared to classical random walks: 1. A coordinate-wise quantum walk that mixes in o((Sigma(d)(t=1) n(t)) log (d/epsilon)) time with O(d. log(d/epsilon)) measurements. 2. A continuous-time quantum walk with O(log(1/epsilon)) measurements that conjecturally mixes in O(Sigma(d)(t=1) n(t) (log(n(1)))(2) log(1/epsilon)) time. Our results demonstrate a quadratic speedup over the classical mixing time O(dn(1)(2) log(d/epsilon)) on the generalized periodic lattice L. We have provided analytical evidence and numerical simulations to support the conjectured faster mixing time of the continuous-time quantum walk algorithm. Making progress towards proving the general conjecture that quantum walks on regular graphs mix in O(delta(-1/2) log(N) log(N) log(1/epsilon)) time, where delta. is the spectral gap and.. is the number of vertices.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Key-Area Research and Development Program of Guang-Dong Province[2018B030326001] ; Shenzhen Science and Technology Program[KQTD20200820113010023]
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:001088706300001
出版者
EI入藏号
20234114856271
EI主题词
Continuous time systems ; Graph theory ; Mixing
EI分类号
Computer Systems and Equipment:722 ; Chemical Operations:802.3 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582776
专题量子科学与工程研究院
作者单位
1.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn SIQSE, Shenzhen, Peoples R China
2.Int Quantum Acad SIQA, Shenzhen, Peoples R China
3.Hefei Natl Lab, Shenzhen Branch, Shenzhen, Peoples R China
第一作者单位量子科学与工程研究院
通讯作者单位量子科学与工程研究院
第一作者的第一单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Dhamapurkar, Shyam,Deng, Xiu-Hao. Quantum walk mixing is faster than classical on periodic lattices[J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS,2023,630.
APA
Dhamapurkar, Shyam,&Deng, Xiu-Hao.(2023).Quantum walk mixing is faster than classical on periodic lattices.PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS,630.
MLA
Dhamapurkar, Shyam,et al."Quantum walk mixing is faster than classical on periodic lattices".PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 630(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dhamapurkar, Shyam]的文章
[Deng, Xiu-Hao]的文章
百度学术
百度学术中相似的文章
[Dhamapurkar, Shyam]的文章
[Deng, Xiu-Hao]的文章
必应学术
必应学术中相似的文章
[Dhamapurkar, Shyam]的文章
[Deng, Xiu-Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。