题名 | H1-NORM STABILITY AND CONVERGENCE OF AN L2-TYPE METHOD ON NONUNIFORM MESHES FOR SUBDIFFUSION EQUATION |
作者 | |
通讯作者 | Quan, Chaoyu |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 0036-1429
|
EISSN | 1095-7170
|
卷号 | 61期号:5页码:2106-2132 |
摘要 | This work establishes H-1-norm stability and convergence for an L2 method on general nonuniform meshes when applied to the subdiffusion equation. Under mild constraints on the time step ratio rho(k), such as 0.4573328 <= rho(k) <= 3.5615528 for k >= 2, the positive semidefiniteness of a crucial bilinear form associated with the L2 fractional-derivative operator is proved. This result enables us to derive long time H-1-stability of L2 schemes. These positive semidefiniteness and H-1-stability properties hold for standard graded meshes with grading parameter 1 < r <= 3.2016538. In addition, error analysis in the H-1-norm for general nonuniform meshes is provided, and convergence of order (5 - alpha)/2 in the H-1-norm is proved for modified graded meshes when r > 5/alpha - 1. To the best of our knowledge, this study is the first work on H-1-norm stability and convergence of L2 methods on general nonuniform meshes for the subdiffusion equation. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Sci-ence Foundation of China[12271241]
; Guangdong Basic and Applied Basic Research Foundation[2023B1515020030]
; Shenzhen Science and Technology Program[RCYX20210609104358076]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:001082987300005
|
出版者 | |
EI入藏号 | 20234414982342
|
EI主题词 | Convergence of numerical methods
; Grading
; Partial differential equations
|
EI分类号 | Calculus:921.2
; Numerical Methods:921.6
|
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/582843 |
专题 | 理学院_数学系 |
作者单位 | 1.Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China 2.Southern Univ Sci & Technol, SUS Tech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China 3.Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China 4.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Quan, Chaoyu,Wu, Xu. H1-NORM STABILITY AND CONVERGENCE OF AN L2-TYPE METHOD ON NONUNIFORM MESHES FOR SUBDIFFUSION EQUATION[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS,2023,61(5):2106-2132.
|
APA |
Quan, Chaoyu,&Wu, Xu.(2023).H1-NORM STABILITY AND CONVERGENCE OF AN L2-TYPE METHOD ON NONUNIFORM MESHES FOR SUBDIFFUSION EQUATION.SIAM JOURNAL ON NUMERICAL ANALYSIS,61(5),2106-2132.
|
MLA |
Quan, Chaoyu,et al."H1-NORM STABILITY AND CONVERGENCE OF AN L2-TYPE METHOD ON NONUNIFORM MESHES FOR SUBDIFFUSION EQUATION".SIAM JOURNAL ON NUMERICAL ANALYSIS 61.5(2023):2106-2132.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论