中文版 | English
题名

Plasma-Sheet Bubble Identification Using Multivariate Time Series Classification

作者
通讯作者Yang, Jian
发表日期
2023-10-01
DOI
发表期刊
ISSN
2169-9380
EISSN
2169-9402
卷号128期号:10
摘要
Plasma-sheet bubbles play a major role in the earthward transport of magnetotail particles. The most remarkable feature of bubbles is their fast bulk flow velocities, along with reduced plasma density and pressure accompanied by magnetic field dipolarization. These bubbles can be identified based on in situ observations, but subjective ambiguity necessitates human verification, due to confusion with other phenomena mostly associated with magnetic reconnection and plasma waves. In this study, we aim to employ machine learning (ML) techniques to detect bubbles automatically and to create a tool that can be utilized by individuals without specialized subject expertise. To identify bubbles, we combine three distinct techniques: MINImally RandOm Convolutional KErnel Transform (MINIROCKET), 1D convolution neural network, and Residual Network (ResNet). The imbalanced training data set consists of bubble and non-bubble events with a ratio of 1:40 from 2007 to 2020. The results indicate that the accuracy of all three models is approximately 99%, and their precision, recall, and F-2 score are all above 80% for both the validation and test datasets. The three methods are combined with the intersection set as the minimum set of predictions and the union set as the maximum set. The union set can accurately identify 66.7% of bubbles. The combined method reduces the number of false negatives significantly. In the prediction of bubbles in observations made in the year 2021 using a union set, the bubbles obtained by the model are comparable to those discovered using traditional criteria and manual inspections.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
This work was supported by Grants 41974187, 42174197, and 42204170 of the National Natural Science Foundation of China, the Stable Support Plan Program of Shenzhen Natural Science Fund (Grant 20200925153644003), Shenzhen Science and Technology Program (Gra["41974187","42174197","42204170"] ; National Natural Science Foundation of China[20200925153644003] ; Shenzhen Science and Technology Program["JCYJ20220530113402004","XDB41000000"] ; Chinese Academy of Sciences[NAS5-02099] ; German Ministry for Economy and Technology[50 OC 0302]
WOS研究方向
Astronomy & Astrophysics
WOS类目
Astronomy & Astrophysics
WOS记录号
WOS:001086426100001
出版者
ESI学科分类
SPACE SCIENCE
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582854
专题理学院_地球与空间科学系
作者单位
Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Feng, Xuedong,Yang, Jian. Plasma-Sheet Bubble Identification Using Multivariate Time Series Classification[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS,2023,128(10).
APA
Feng, Xuedong,&Yang, Jian.(2023).Plasma-Sheet Bubble Identification Using Multivariate Time Series Classification.JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS,128(10).
MLA
Feng, Xuedong,et al."Plasma-Sheet Bubble Identification Using Multivariate Time Series Classification".JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 128.10(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Feng, Xuedong]的文章
[Yang, Jian]的文章
百度学术
百度学术中相似的文章
[Feng, Xuedong]的文章
[Yang, Jian]的文章
必应学术
必应学术中相似的文章
[Feng, Xuedong]的文章
[Yang, Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。